%0 Journal Article
%T Study on 3D von Neumann equation with anisotropy for convex grains
凸形晶粒的各向异性三维von Neumann方程研究
%A Wang Hao
%A Liu Guo-Quan
%A Luan Jun-Hua
%A
王浩
%A 刘国权
%A 栾军华
%J 物理学报
%D 2012
%I
%X Understanding the laws of grain growth in three dimensions is one of the classic problems of materials science. By considering the anisotropy in real polycrystalline structure and the relationship between the integral of surface mean curvature and the mean caliper diameter of a convex individual grain, three-dimensional von Neumann equation for accurate grain growth rate is studied. The result shows that accurate grain growth rate of a convex grain is related to the grain mean caliper diameter, the sum of the length of grain edges and the corresponding dihedral exterior angles. This result is verified by Kelvin tetrakaidecahedron and the only five convex regular polyhedra.
%K three-dimensional grain growth
%K anisotropy
%K von Neumann relation
%K mean caliper diameter
三维晶粒长大
%K 各向异性
%K von
%K Neumann方程
%K 平均切直径
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=2C2DE33E892A88204FC1CEEC75483E02&yid=99E9153A83D4CB11&vid=1D0FA33DA02ABACD&iid=E158A972A605785F&sid=E8560A0BD28A02FA&eid=E8560A0BD28A02FA&journal_id=1000-3290&journal_name=物理学报&referenced_num=0&reference_num=22