%0 Journal Article
%T Parameter estimation for chaotic system based on evolution algorithm with hybrid crossover
基于混合交叉进化算法的混沌系统参数估计
%A Long Wen
%A Jiao Jian-Jun
%A
龙文
%A 焦建军
%J 物理学报
%D 2012
%I
%X A hybrid-crossover-based evolution algorithm is proposed to estimate the parameters of chaotic system. Through establishing an appropriate fitness function, the parameter estimation problem is coverted into a multi-dimensional functional optimization problem. In this approach, the individual generation based on good-point-set method is introduced into the evolutionary algorithm initial step, which reinforces the stability and global exploration ability of the evolutionary algorithm. In the evolution process, it not only can be explored to induce the new individuals generated by stochastic hybrid crossover operation to fly into the better subspace, but also can avoid the premature convergence and speed up the convergence. It coordinates the exploitation ability and the exploration ability of algorithm. Numerical simulations on the benchmark function and the Lorenz system are conducted. The results demonstrate the effectiveness of the proposed algorithm, which is shown to be an effective method of parameter estimation for chaotic systems.
%K Lorenz chaotic system
%K parameter estimation
%K hybrid crossover
%K evolution algorithm
Lorenz混沌系统
%K 参数估计
%K 混合交叉
%K 进化算法
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=78F360FC29C4791135CBBB4795C7D606&yid=99E9153A83D4CB11&vid=1D0FA33DA02ABACD&iid=708DD6B15D2464E8&sid=60BDCDDBBB5862FA&eid=60BDCDDBBB5862FA&journal_id=1000-3290&journal_name=物理学报&referenced_num=0&reference_num=17