%0 Journal Article %T The bubble velocity research of Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers
任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究 %A Tao Ye-Sheng %A Wang Li-Feng %A Ye Wen-Hua %A Zhang Guang %A Zhang Jian-Cheng %A Li Ying-Jun %A
陶烨晟 %A 王立锋 %A 叶文华 %A 张广财 %A 张建成 %A 李英骏 %J 物理学报 %D 2012 %I %X We generalize the Layzer's bubble model to the cases of two-dimensional and three-dimensional analytical models of an arbitrary interface Atwood number and obtain self-consistent equations. The generalized model provides a continuous bubble evolution from the earlier exponential growth to the nonlinear regime. The asymptotic bubble velocities are obtained for the Rayleigh-Taylor(RT) and Richtmyer-Meshkov(RM) instabilities. We also report on the two-dimensional and the three-dimensional analytical expressions for the evolution of the RT bubble velocity. %K Rayleigh-Tayor instability %K Richtmyer-Meshkov instability %K Atwood number %K nonlinear
Rayleigh-Taylor不稳定性 %K Richtmyer-Meshkov不稳定性 %K Atwood数 %K 非线性 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=78F360FC29C47911CEDD8522E6020735&yid=99E9153A83D4CB11&vid=1D0FA33DA02ABACD&iid=DF92D298D3FF1E6E&sid=33281491DAD7507F&eid=38FEABCBA573E663&journal_id=1000-3290&journal_name=物理学报&referenced_num=0&reference_num=23