%0 Journal Article %T A finite-time stable theorem about fractional systems and finite-time synchronizing fractional super chaotic Lorenz systems
分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步 %A Zhao Ling-Dong %A Hu Jian-Bing %A Bao Zhi-Hu %A Zhang Guo-An %A Xu Chen %A Zhang Shi-Bing %A
赵灵冬 %A 胡建兵 %A 包志华 %A 章国安 %A 徐晨 %A 张士兵 %J 物理学报 %D 2011 %I %X Finite-time stable theorem about fractional system and finite-time synchronizing fractional chaotic system are studied in this paper. A finite-time stable theorem is proposed and proved according to the properties of fractional equation. Using this theorem, fractional super chaotic Lorenz systems is synchronized in finite-time. Numerical simulation certifies the effectiveness of the theorem proposed in this paper. %K fractional %K super chaotic Lorenz system %K stable %K finite-time synchronizing
分数阶 %K 超混沌Lorenz系统 %K 稳定 %K 有限时间同步 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=F437B1BF01E7F4867F53E71DB1A88F65&yid=9377ED8094509821&vid=BFE7933E5EEA150D&iid=F3090AE9B60B7ED1&sid=100442506AD2CE77&eid=100442506AD2CE77&journal_id=1000-3290&journal_name=物理学报&referenced_num=0&reference_num=18