%0 Journal Article %T The influence of variable quantity of polarization on the current intensity of the electron emission from La-doped Pb(Zr, Sn, Ti)O3 ferroelectric cathode
掺镧锆锡钛酸铅陶瓷极化强度变化量对电子发射电流强度的影响 %A Huang Xu-Dong %A Feng Yu-Jun %A Tang Shuai %A
黄旭东 %A 冯玉军 %A 唐帅 %J 物理学报 %D 2012 %I %X Ferroelectric cathodes exhibit huge potentials in high-power microwave tube electron beam source, panel display, and the propeller space navigation, due to their superior properties. The material properties of the ferroelectric cathode have been proved to have a significant influence on electron emission, which is indicated in recent research work. In the course of electron emission, the variation of polarization can be caused by non-shielded surface charge which is induced by high trigger voltage. A certain relationship may be found between polarization variation and current intensity of electron emission. To study the relationship between current intensity of electron emission and polarization variation in ferroelectric cathodes, the samples of lanthanum-doped lead zirconate stannate titanate ferroelectric and antiferroelectric ceramics are prepared by the method of solid state calcinations, and the polarization variations of the material under different voltages are measured in the positive half cycle test of hysteresis loop. The curve of the electron emission current intensity versus the trigger voltage is measured, and then the relationship between electron emission current intensity and polarization variation is investigated. The results show that the electron emission current intensities of the two samples are both directly proportional to the polarization variation. %K antiferroelectric ceramics %K polarization %K ferroelectric cathode electron emission
反铁电陶瓷 %K 极化 %K 铁电阴极电子发射 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=78F360FC29C47911A68F34E1F0045337&yid=99E9153A83D4CB11&vid=1D0FA33DA02ABACD&iid=5D311CA918CA9A03&sid=9575120670930C17&eid=CCAF5B336228C820&journal_id=1000-3290&journal_name=物理学报&referenced_num=0&reference_num=13