%0 Journal Article
%T A piecewise-linear Sprott system and its chaos mechanism
一个分段Sprott系统及其混沌机理分析
%A Chen Jian-Jun
%A Yu Si-Min
%A
陈建军
%A 禹思敏
%J 物理学报
%D 2009
%I
%X In this paper, a piecewise-linear Sprott system is proposed and its chaos mechanism is analyzed. According to the Shilnikov theorem, on the condition that the basic characteristics of heteroclinic orbit, Shilnikov inequality and eigenvalue equation are satisfied, by finding a heteroclinic orbit formed by three geometric invariant sets, namely the unstable manifold, heteroclinic point, and stable manifold, a set of real parameters in accordance with the condition of existence of heteroclnic orbit are obtained for this chaotic system. Thus, the existence of heteroclnic orbit has been proved. Finally, according to this set of real parameters, the circuit design and experimental verification has been carried out.
%K piecewise-linear Sprott system
%K Shilnikov theorem
%K heteroclinic orbit
%K circuit experiment
分段Sprott系统,
%K Shilnikov定理,
%K 异宿轨道,
%K 电路实验
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=BE873AB1C7314801B33F2DF4FC51D9E4&yid=DE12191FBD62783C&vid=9FFCC7AF50CAEBF7&iid=708DD6B15D2464E8&sid=C652ACA22B2A0DFF&eid=2B75F6033CCAAFC0&journal_id=1000-3290&journal_name=物理学报&referenced_num=1&reference_num=0