%0 Journal Article
%T Acceleration-dependent Lagrangians in classical mechanics
经典力学中加速度相关的Lagrange函数
%A Ding Guang-Tao
%A
丁光涛
%J 物理学报
%D 2009
%I
%X The linear acceleration-dependent Lagrangians are studied. Under the symmetric conditions of coefficients in acceleration terms, the Lagrange's equations remain second-order differential equations. The approach to constructing an acceleration-dependent Lagrangian from its equations of motion is presented. The relations between the acceleration-dependent Lagrangians and the acceleration independent ones of the same system are studied. Two examples are given to illustrate the application of the results.
%K Lagrange's equations
%K acceleration-dependent Lagrangians
%K generalized mechanics
%K gauge transformations of Lagrangians
Lagrange方程,
%K 加速度相关的Lagrange函数,
%K 广义力学,
%K Lagrange函数的规范变换
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=14B9A12171CC28627AD2CB38245A1A5D&yid=DE12191FBD62783C&vid=9FFCC7AF50CAEBF7&iid=B31275AF3241DB2D&sid=65F22395E02F13AA&eid=4415CA851AC36C0F&journal_id=1000-3290&journal_name=物理学报&referenced_num=0&reference_num=0