%0 Journal Article
%T A symmetric product of two optimal third-order force gradient symplectic algorithms
两个三阶最优化力梯度辛积分器的对称组合
%A Li Rong
%A Wu Xin
%A
李荣
%A 伍歆
%J 物理学报
%D 2010
%I
%X This paper provides two new fourth-order force gradient symplectic intrgrators,each of which is obtained from a symmetric product of two identied optimal third-order force gradient symplectic algorithms reported in the literature. They are both greatly superior to the fourth-order non-gradient symplectic method of Forest and Ruth in the accuracy of either energy on chaotic perturbed Kepler problems or the energy eigenvalues for one-dimensional Schr dinger equations. So are they to the known optimalfourth-order force gradient symplectic scheme.
%K symplectic integrator
%K perturbed Kepler problem
%K chaos
%K energy eigenvalues
辛积分器
%K 摄动Kepler问题
%K 混沌
%K 能量本征值
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=5CAD215287243495D0F1E56A4FCA72B6&yid=140ECF96957D60B2&vid=6AC2A205FBB0EF23&iid=F3090AE9B60B7ED1&sid=C3A46E9BF0F2724E&eid=57842A36F8186591&journal_id=1000-3290&journal_name=物理学报&referenced_num=0&reference_num=37