%0 Journal Article %T Dynamic properties and drifting of the solution pattern of cubic nonlinear Schr?dinger equation with varying nonlinear parameters
立方非线性Schr?dinger方程的动力学性质研究及其解模式的漂移 %A Luo Xiang-Yi %A Liu Xue-Shen %A Ding Pei-Zhu %A
罗香怡 %A 刘学深 %A 丁培柱 %J 物理学报 %D 2007 %I %X The dynamic properties of one-dimensional cubic nonlinear Schr?dinger equation and drifting of the solution pattern are investigated numerically by using the symplectic method with different nonlinear parameters in the perturbation initial condition. The numerical simulation illustrates that the system shows different dynamic behaviors with varying nonlinear parameters, but the motion in the phase space is regularly recurrent. The results show that the drifting velocity for the small nonlinear parameter is small. With the nonlinear parameter increasing, drifting velocity of the solution pattern becomes faster at the same time of evolution. %K dynamic properties %K phase space %K drifting of the solution pattern %K symplectic method
动力学性质, %K 相轨线, %K 解模式的漂移, %K 辛算法 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=B770F8330A468993&yid=A732AF04DDA03BB3&vid=014B591DF029732F&iid=0B39A22176CE99FB&sid=1A0C7C60D40EFD74&eid=44E78A5D1B37D836&journal_id=1000-3290&journal_name=物理学报&referenced_num=0&reference_num=18