%0 Journal Article
%T Analytical self-similar solutions of Ginzburg-Landau equation for the dispersion decreasing fiber
色散渐减光纤中Ginzburg-Landau方程的自相似脉冲演化的解析解
%A Feng Jie
%A Xu Wen-Chen
%A Li Shu-Xian
%A Chen Wei-Cheng
%A Song Fang
%A Shen Min-Chang
%A Liu Song-Hao
%A
冯杰
%A 徐文成
%A 李书贤
%A 陈伟成
%A 宋方
%A 申民常
%A 刘颂豪
%J 物理学报
%D 2007
%I
%X Using the method based on the technique of symmetry reduction, we find the general analytical parabolic asymptotic self-similar solutions for the varying coefficient of Ginzburg-Landau equation that take consideration of the influence of the doped fiber retarding time. The parabolic asymptotic amplitude function, change of strict linear phase chirp and the effective temporal pulse width of self-similar pulse with gain dispersion are given for the dispersion decreasing fibers with longitudinal exponential distribution and hyperbolic distribution. And these theoretical results have been confirmed by numerical simulation in this paper.
%K Ginzburg-Landau equation
%K parabolic asymptotic self-similarity
%K dispersion decreasing fiber
%K normal group velocity dispersion
Ginzburg-Landau方程
%K 自相似脉冲
%K 色散渐减光纤
%K 正常GVD
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=97F4469AA2103FE9&yid=A732AF04DDA03BB3&vid=014B591DF029732F&iid=F3090AE9B60B7ED1&sid=F42DB6E2B4CCC05C&eid=CB258834790E130B&journal_id=1000-3290&journal_name=物理学报&referenced_num=1&reference_num=23