%0 Journal Article
%T Solutions of path integration for nonlinear dynamical system under stochastic parametric and external excitations
随机参激和外激联合作用下非线性动力系统的路径积分解
%A Xie Wen-Xian
%A Xu Wei
%A Lei You-Ming
%A Cai Li
%A
谢文贤
%A 徐 伟
%A 雷佑铭
%A 蔡 力
%J 物理学报
%D 2005
%I
%X The numerical path integration based on Gauss Legendre scheme is extended to the case of nonlinear dynamical system under stochastic parametric and external excitations. For the purpose of comparison between the numerical solutions and the analytic solution(if the system has) or Monte Carlo simulation, we discuss the system under parametric and external Gaussian white noise excitations. The numerical method is shown to give accurate results. Via the numerical solutions of path integration, we have studied the P bifurcation of the stochastic system.
%K path integration
%K P bifurcation
%K stochastic parametric excitation
%K stochastic external excitation
路径积分,
%K P分岔,
%K 随机参激,
%K 随机外激
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=5B9DDBF9F884057C&yid=2DD7160C83D0ACED&vid=318E4CC20AED4940&iid=38B194292C032A66&sid=9236E752FE2887AD&eid=1AA557EFF1C6B447&journal_id=1000-3290&journal_name=物理学报&referenced_num=2&reference_num=20