%0 Journal Article
%T Detecting the nonlinearity for time series sampled from continuous dynamic systems
连续动力系统时间序列的非线性检验
%A Lei Min
%A Meng Guang
%A Feng Zheng-Jin
%A
雷 敏
%A 孟 光
%A 冯正进
%J 物理学报
%D 2005
%I
%X This paper studies the detection of the nonlinearity of time series sampled from continuous dynamics systems by using the surrogate data method. The results show that under the different sampling conditions, the detection finds different nonlinearity of chaotic time series. Especially for the oversampling time series, there can often be some illusive results. For this, we suggest that it is best to apply nonlinear values as testing statistics for detecting nonlinearity of oversampling time series.
%K surrogate data
%K correlation dimension
%K nonlinear time series
%K nonlinear testing
替代数据,
%K 关联维数,
%K 连续时间序列,
%K 非线性检验
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=C1C9AE6381266538&yid=2DD7160C83D0ACED&vid=318E4CC20AED4940&iid=38B194292C032A66&sid=A326383D2F3B3AB0&eid=EE05CC1F800E4629&journal_id=1000-3290&journal_name=物理学报&referenced_num=1&reference_num=15