%0 Journal Article %T Hopf bifurcation from synchronous chaos and its circuit simulation in a coupled nonlinear oscillator system
一类耦合非线性振子同步混沌Hopf分岔及其电路仿真 %A Ma Wen-Qi %A Yang Cheng-Hui %A
马文麒 %A 杨承辉 %J 物理学报 %D 2005 %I %X For a coupled nonlinear oscillator system with diffusion and gradient couplings, spatial Fourier transformation is performed and the dynamic equations of various space modes are derived. By calculating the Lyapunov exponents of the transverse modes, one can determine the stable region of the synchronous chaos on the plane of coupling parameters. On the boundary of the stable region, a couple of conjugate transverse modes destabilize, and a Hopf bifurcation takes place. Numerical simulations are carried out for the coupled Lorenz oscillator system. An electronic circuit is designed for simulating the bifurcation in the system. Results from the simulations show that the frequency created by the Hopf bifurcation is equal to the oscillation frequency of the destabilized transverse modes. %K coupled nonlinear oscillators %K synchronous chaos %K transverse mode %K circuit simulation
耦合非线性振子 %K 同步混沌 %K 横截模式 %K 电路仿真 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=7D435AC4E64A6423&yid=2DD7160C83D0ACED&vid=318E4CC20AED4940&iid=38B194292C032A66&sid=941A3E905B9F2AD9&eid=A50445FB05D4B1A0&journal_id=1000-3290&journal_name=物理学报&referenced_num=0&reference_num=18