%0 Journal Article
%T New variable separation solutions, localized structures and fractals in the (3 + 1)-dimensional nonlinear Burgers system
(3+1)维非线性Burgers系统的新的分离变量解及其局域激发结构与分形结构
%A Huang Lei
%A Sun Jian-An
%A Dou Fu-Quan
%A Duan Wen-Shan
%A Liu Xing-Xia
%A
黄磊
%A 孙建安
%A 豆福全
%A 段文山
%A 刘兴霞
%J 物理学报
%D 2007
%I
%X Applying the extended Riccati mapping approach to the (3+1)-dimensional nonlinear Burgers system, we obtain new variable separation solutions which contain an arbitrary function. With the help of numerical simulation of Mathematica, abundant special types of new localized excitations and fractals are discussed by selecting the arbitrary function appropriately. The solutions indicate that the extended Riccati mapping approach is valid for solving a class of (3+1)-dimensional nonlinear equations and can obtain much more abundant localized excitations than that of the (2+1)-dimensional nonlinear equations.
%K extended Riccati mapping approach
%K (3+1)-dimensional nonlinear Burgers equation
%K localized excitations
%K fractals
扩展的Riccati方程映射法
%K (3
%K 1)维非线性Burgers方程
%K 局域激发结构
%K 中谓峁构
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=218A78FF9A167829&yid=A732AF04DDA03BB3&vid=014B591DF029732F&iid=0B39A22176CE99FB&sid=FED67FBA0A707330&eid=06D504E5261AB652&journal_id=1000-3290&journal_name=物理学报&referenced_num=0&reference_num=24