%0 Journal Article %T The quasi-wavelet solutions of MKdV equations
MKdV方程的拟小波解 %A Tang Jia-Shi %A Liu Zhu-Yong %A Li Xue-Ping %A
唐驾时 %A 刘铸永 %A 李学平 %J 物理学报 %D 2003 %I %X The quasi-wavelet method is used for obtaining the numerical solution of the MKdV equation- The quasi-wavelet discrete scheme is adopted to make the spatial derivatives discrete, while the fourth-order Runge-Kutta method is adopted to make the temporal derivative discrete- One of the MKdV equation ut+6u2ux+uxxx=0, which has an analytical solution, is solved numerically- The numerical results are well consistent with the analytical solutions, even at t=10000s- %K MKdV equation %K quasi-wavelet method %K soliton solution
MKdV方程, %K 拟小波方法, %K 孤子解 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=4A4A8AC16437BE09&yid=D43C4A19B2EE3C0A&vid=286FB2D22CF8D013&iid=38B194292C032A66&sid=91BAD12CFABB3251&eid=20C3B205768D55E0&journal_id=1000-3290&journal_name=物理学报&referenced_num=10&reference_num=7