%0 Journal Article
%T NEW LAX INTEGRABLE HIERARCHY OF EVOLUTION EQUATIONS AND ITS INFINITE-DIMENSIONAL BI-HAMILTONIAN STRUCTURE
新的Lax可积发展方程族及其无限维双-哈密顿结构
%A YAN ZHEN-YA
%A ZHANG HONG-QING
%A
闫振亚
%A 张鸿庆
%J 物理学报
%D 2001
%I
%X Based on a new isospectral problem with three potential functions (q,r,s),a new Lax integrable hierarchy of evolution equations with an arbitrary function is obtained in this paper.When the potential,s,is put into differential functions,the hierarchy of equations can reduce to several kinds of systems of equations.By using the trace identity,their bi-Hamiltonian structures are given,and it is shown that they are integrable in the Liouville's sense.Moreover,the conserved densities and symmetries are also found.
%K isospectral problem
%K Hamiltonian structure
%K Lax integrable
%K Liouville integrable
等谱问题
%K Liouville可积
%K 可积动力系统
%K Lax可积方程组
%K 双-哈密顿结构
%K 孤子理论
%K 位势函数
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=CD84C80B8859A47E&yid=14E7EF987E4155E6&vid=771152D1ADC1C0EB&iid=DF92D298D3FF1E6E&sid=880C4253794026AD&eid=83BD01456E8187CE&journal_id=1000-3290&journal_name=物理学报&referenced_num=1&reference_num=8