%0 Journal Article %T GENERALIZED WINDING NUMBER OF CHAOTIC OSCILLATORS AND HOPF BIFURCATION FROM SYNCHRONOUS CHAOS
混沌振子的广义旋转数和同步混沌的Hopf分岔 %A MA WEN-QI %A YANG JUN-ZHONG %A LIU WEN-JI %A BAO GANG %A HU GANG %A
马文麒 %A 杨俊忠 %A 刘文吉 %A 包 刚 %A 胡 岗 %J 物理学报 %D 1999 %I %X In describing various modes of chaotic oscillators, generalized winding numbers are defined in tangent space corresponding to Lyapunov exponents of the chaotic attractor. Bifurcation behaviors from synchronous chaos of coupled Duffing oscillators are investigated using these concepts. The results show that a kind of Hopf bifurcation can take place from the synchronous chaotic state. Analysis of power spectrum indicates that the characteristic frequency created by the Hopf bifurcation is equal to the generalized winding number of the critical transverse modes just before the bifurcation. %K 混沌振子 %K 广义旋转数 %K 同步混沌 %K Hopf分岔 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=52C3612222CD817DB6FE376305C07E12&yid=B914830F5B1D1078&vid=B6DA1AC076E37400&iid=94C357A881DFC066&sid=872F6C582A30BA57&eid=89FA2FA9891FF61E&journal_id=1000-3290&journal_name=物理学报&referenced_num=9&reference_num=3