%0 Journal Article
%T Critical behavior of the Gaussian model on X fractal lattices
X分形晶格上Gauss模型的临界性质
%A Li Ying
%A Kong Xiang-Mu
%A Huang Jia-Yin
%A
李英
%A 孔祥木
%A 黄家寅
%J 物理学报
%D 2002
%I
%X Using the real-space renormalization group transformation method, critical behavior of the Gaussian model on two-dimension and %d%-dimension (%d%>2) X fractal lattices is studied. The results show that, at the critical point, the nearest-neighbor interaction parameter can be expressed in the form %K+*=b q-i/q-i(q-i% is the coordination number of site %i, b q-i% is the Gaussian distribution constant of site %i%), which is the same as that of other fractal lattices, and that the critical exponent %v% is associated with the space dimension %d% (or the fractal dimension %d%-f). They are much different from those of the Ising model on X fractal lattices.
%K X fractal lattice
%K renormalization group
%K Gaussian model
%K critical behavior
X分形晶格
%K 重整化群
%K Gauss模型
%K 临界性质
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=D779C43AB8604001&yid=C3ACC247184A22C1&vid=987EDA49D8A7A635&iid=B31275AF3241DB2D&sid=6733A846E5AFAE2E&eid=9C959CAF55D6B1C2&journal_id=1000-3290&journal_name=物理学报&referenced_num=3&reference_num=10