%0 Journal Article
%T SYMMETRY STRUCTURE OF 2+1 DIMENSIONAL BILINEAR SAWADA-KOTERA EQUATION
2+1维双线性Sawada-Kotera方程的对称结构
%A LOU SEN-YUE
%A YU JUN
%A WENG JIAN-PIN
%A QIAN XIAN-MIN
%A
楼森岳
%A 俞军
%A 翁建平
%A 钱贤民
%J 物理学报
%D 1994
%I
%X We established a formal series symmetry theory for a type of generalized 2+1 dimensional bilinear equation in two different ways. Starting from a known time in-dependent symmetry or an arbitrary function of 1-D space, we can get a formal series symmetry with an arbitrary function of time t. For the 2+1 dimensional bilinear Sawada-Kotera equation, there exist six truncated symmetries. These truncated symmetries constitute an infinite dimensional Lie algebra. Some significant subalge-bras such as the Virasoro algebras are also given.
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=C7796EEBCF8EB9C43BD21432477551D0&yid=3EBE383EEA0A6494&vid=BE33CC7147FEFCA4&iid=DF92D298D3FF1E6E&sid=208AC7DC28BD1EC6&eid=309A221A57FE8496&journal_id=1000-3290&journal_name=物理学报&referenced_num=6&reference_num=0