%0 Journal Article %T SYMMETRY STRUCTURE OF 2+1 DIMENSIONAL BILINEAR SAWADA-KOTERA EQUATION
2+1维双线性Sawada-Kotera方程的对称结构 %A LOU SEN-YUE %A YU JUN %A WENG JIAN-PIN %A QIAN XIAN-MIN %A
楼森岳 %A 俞军 %A 翁建平 %A 钱贤民 %J 物理学报 %D 1994 %I %X We established a formal series symmetry theory for a type of generalized 2+1 dimensional bilinear equation in two different ways. Starting from a known time in-dependent symmetry or an arbitrary function of 1-D space, we can get a formal series symmetry with an arbitrary function of time t. For the 2+1 dimensional bilinear Sawada-Kotera equation, there exist six truncated symmetries. These truncated symmetries constitute an infinite dimensional Lie algebra. Some significant subalge-bras such as the Virasoro algebras are also given. %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=29DF2CB55EF687E7EFA80DFD4B978260&aid=C7796EEBCF8EB9C43BD21432477551D0&yid=3EBE383EEA0A6494&vid=BE33CC7147FEFCA4&iid=DF92D298D3FF1E6E&sid=208AC7DC28BD1EC6&eid=309A221A57FE8496&journal_id=1000-3290&journal_name=物理学报&referenced_num=6&reference_num=0