%0 Journal Article %T Improving Hox Protein Classification across the Major Model Organisms %A Stefanie D. Hueber %A Georg F. Weiller %A Michael A. Djordjevic %A Tancred Frickey %J PLOS ONE %D 2012 %I Public Library of Science (PLoS) %R 10.1371/journal.pone.0010820 %X The family of Hox-proteins has been a major focus of research for over 30 years. Hox-proteins are crucial to the correct development of bilateral organisms, however, some uncertainty remains as to which Hox-proteins are functionally equivalent across different species. Initial classification of Hox-proteins was based on phylogenetic analysis of the 60 amino acid homeodomain. This approach was successful in classifying Hox-proteins with differing homeodomains, but the relationships of Hox-proteins with nearly identical homeodomains, yet distinct biological functions, could not be resolved. Correspondingly, these ¡®problematic¡¯ proteins were classified into one large unresolved group. Other classifications used the relative location of the Hox-protein coding genes on the chromosome (synteny) to further resolve this group. Although widely used, this synteny-based classification is inconsistent with experimental evidence from functional equivalence studies. These inconsistencies led us to re-examine and derive a new classification for the Hox-protein family using all Hox-protein sequences available in the GenBank non-redundant protein database (NCBI-nr). We compare the use of the homeodomain, the homeodomain with conserved flanking regions (the YPWM and linker region), and full length Hox-protein sequences as a basis for classification of Hox-proteins. In contrast to previous attempts, our approach is able to resolve the relationships for the ¡®problematic¡¯ as well as ABD-B-like Hox-proteins. We highlight differences to previous classifications and clarify the relationships of Hox-proteins across the five major model organisms, Caenorhabditis elegans, Drosophila melanogaster, Branchiostoma floridae, Mus musculus and Danio rerio. Comparative and functional analysis of Hox-proteins, two fields crucial to understanding the development of bilateral organisms, have been hampered by difficulties in predicting functionally equivalent Hox-proteins across species. Our classification scheme offers a higher-resolution classification that is in accordance with phylogenetic as well as experimental data and, thereby, provides a novel basis for experiments, such as comparative and functional analyses of Hox-proteins. %U http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0010820