%0 Journal Article %T The Hausdorff Dimension for a Class of Generalized Random Fractals
一类推广的随机分形的 Hausdorff维数 %A Zhuang Yan %A Dai Chaoshou %A
庄艳 %A 戴朝寿 %J 数学物理学报(A辑) %D 2008 %I %X In this paper, a class of generalized random recursive construction with finite memory in Euclidean $d$-space is researched. For each $\beta\geq 0$, a function $\Psi(\beta)$ assiociated with the construction is introduced and a random measure $\mu_{\omega}$ is constructed. That the Hausdorff dimension of the random limit set $K(\omega)$ generated by the above construction is equal to $\alpha:=\inf\{\beta:\Psi(\beta)\leq1\}$ is proved. %K Hausdorff dimensionzz %K Random constructionzz %K Supermartingalezz %K Extension of measurezz %K Random measurezz %K Local dimensionzz
Hausdorff维数 %K 随机结构 %K 上鞅 %K 测度的扩张 %K 随机测度 %K 局部维数. %K 类推 %K 随机分形 %K Hausdorff %K 维数 %K Fractals %K Random %K Generalized %K Class %K 随机集 %K 随机测度 %K 构造 %K 函数 %K 结构 %K 递归模型 %K 有限记忆 %K 研究 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=3285BAE9EE61A19BB241C863BD117CBB&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=0B39A22176CE99FB&sid=C812B90E96151014&eid=1D01216AD76577EC&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=0&reference_num=17