%0 Journal Article %T Existence of Weak Solutions to a Class of Elliptic Stochastic Partial Differential Equations
一类椭圆型随机偏微分方程弱解的存在性 %A Ran Qikang %A
冉启康 %J 数学物理学报(A辑) %D 2008 %I %X In this paper the authors study of following problem: Let $D$ be a bounded open set of $R^N(N>1)$ and $(\Omega,F,P)$ is a probability space. The authors study the existence of weak solutions of the following stochastic boundary value problem:$$\left\{\begin{array}{ll}-{\rm div} A(x,\omega,u, \nabla u)=f(x,\omega, u),\,\, &(x,\omega)\in D\times \Omega,\\u=0, &(x,\omega)\in \partial D\times \Omega,\end{array}\right.$$where by div and $\nabla$ the authors denote differentiation with respect to $x$ only. First, the authorsintroduce the concept of the weak solution, then the authors transform the stochastic problem into a deterministicone in high-dimensions. Finally, the authors prove the existence of weak solutions. %K Nonlinear elliptic stochastic partial differential equationszz %K Weak solutionszz %K Leray-Schauder continuation methodzz
非线性椭圆随机偏微分方程 %K 弱解 %K Leray-Schauder连续方法. %K 椭圆型 %K 随机偏微分方程 %K 弱解的存在性 %K Partial %K Differential %K Equations %K Stochastic %K Elliptic %K Class %K Weak %K Solutions %K 确定性问题 %K 随机问题 %K 转化 %K divA %K 边值问题 %K 研究 %K 概率空间 %K 开集 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=EADA9586CDA1315549673A77DB3B0489&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=0B39A22176CE99FB&sid=CA9ED1AB4D9E3E04&eid=A5B34D9E8FDA439A&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=0&reference_num=12