%0 Journal Article
%T Vertex Algebra Associated to Nondegenerate Solvable Lie Algebras
构造相应于有限维非退化可解李代数的顶点代数
%A Wang Shuqin
%A
王书琴
%J 数学物理学报(A辑)
%D 2006
%I
%X The main purpose of this article is to construct the vertex algebra of associated to finite-nondegenerate solvable Lie algebra. Avoid the notion of module of vertex algebra and tire some the Jacobi identity. Apply the equivalent condition with the Jacobi identity:the weak commutativity and the D-derivatve-bracket formula. On the theorems of the representation of finite-nondegenerate solvable Lie algebra g and the level l restricted module of the affine algebra $\hat{g}$ of g. Construct and prove a kind the vertex algebras , which equipped the structure of different with that the vertex algebra of associated to Heisenberg algebra and non-twist Kac-moody algebra.
%K The level l restricted module of the affine algebra $\hat{g}$zz
%K The vertex algebra of associated to finite-nondegenerate solvable Lie algebrazz
%K Jacobi-identity and the weak associativity and the D-derivative-bracket formulaszz
非退化可解李代数的顶点代数
%K 水平为$l$的限制$\hat{g}$
%K -摸
%K Jacobi
%K -等式及弱交换性和D
%K -导子-换位公式
%K 顶点代数同构
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=2C2E9F7D1BA5978EC7631E0C65B81020&yid=37904DC365DD7266&vid=96C778EE049EE47D&iid=B31275AF3241DB2D&sid=82BCA4C44409DD5C&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=2&reference_num=0