%0 Journal Article %T Inequalities for Widths of Convex Bodies with Applications
凸体的宽度不等式及应用 %A Yuan Shufeng %A Ke Rui %A Leng Gangsong %A
袁淑峰 %A 柯睿 %A 冷岗松 %J 数学物理学报(A辑) %D 2007 %I %X In this paper the authors establish the following inverse inequality of Yang-Zhang's inequality for the width of a simplex: Let $\Omega$ be an n-dimensional simplex with volume Voln(\Omega)$,width $w(\Omega)$, and facet areas $S_1,S_2,\cdots,S_{n+1}$ respectively, then$$w(\Omega)\ge r_n\cdot\frac{{{\rm Vol}_n}(\Omega)}{\displaystyle\max_{1\le i\le n+1}(S_i)},$$where $$\gamma_n=\left\{\begin{array}{cl}\disp \frac{2n}{n+1}, & \qquad {\rm for~ odd}~~ n;\\2, & \qquad {\rm for~ even}~~ n.\end{array} \right.$$As applications, the authors show some inequalities for orthogonal projections and sections of convex bodies. %K Convex body %K Width %K Simplex %K Volume
凸体 %K 宽度 %K 单形 %K 体积. %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=45E56ED9809BC6FF9F01099093574425&yid=A732AF04DDA03BB3&vid=DB817633AA4F79B9&iid=E158A972A605785F&sid=36C49E1242CC2C7A&eid=66D0A4667FE1A38D&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=0&reference_num=9