%0 Journal Article
%T Lagrangian Globalization Projection Methods for Nonlinear Constrained Equations
解非线性约束方程的拉格朗日全局投影方法
%A Tong Xiaojiao
%A He Wei
%A
童小娇
%A 何伟
%J 数学物理学报(A辑)
%D 2008
%I
%X To solve constrained nonlinear equations based on optimizationalgorithms is suffered a difficulty that the authors obtain just a stationary point or a local minimizer of the underlying optimization problem, which is not necessarily a solution of the equations. Then the arising problem is how to get a better point from the stationary point or the local minimizer point. By using a projection-type method, this paper extends the Lagrangian globalization (LG) method 8, 9] to a system ofnonlinear equations with bounded constraints. The authors prove that from a stationary point, the LG projection method can find a better point. Numerical examples also show that the LG method has a potential to escape the stationary point of optimization problems.
%K Constrained equations
%K Lagrangian globalization method
%K Stationary point
%K Global convergence
约束方程组
%K 拉格朗日全局算法
%K 稳定点
%K 全局收敛.
%K 非线性
%K 约束方程
%K 拉格朗日
%K 投影方法
%K Equations
%K Constrained
%K Nonlinear
%K Projection
%K Methods
%K Globalization
%K 有效性
%K 验证
%K 数值
%K 理论
%K Lagrangian
%K 全局算法
%K 无约束
%K 方程组解
%K 优化问题
%K 极小点
%K 局部
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=6418D9B9FDAE0A67045F026BFD59F628&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=CA4FD0336C81A37A&sid=6700D0D256586E73&eid=6270DC1B5693DDAF&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=0&reference_num=14