%0 Journal Article %T Lagrangian Globalization Projection Methods for Nonlinear Constrained Equations
解非线性约束方程的拉格朗日全局投影方法 %A Tong Xiaojiao %A He Wei %A
童小娇 %A 何伟 %J 数学物理学报(A辑) %D 2008 %I %X To solve constrained nonlinear equations based on optimizationalgorithms is suffered a difficulty that the authors obtain just a stationary point or a local minimizer of the underlying optimization problem, which is not necessarily a solution of the equations. Then the arising problem is how to get a better point from the stationary point or the local minimizer point. By using a projection-type method, this paper extends the Lagrangian globalization (LG) method 8, 9] to a system ofnonlinear equations with bounded constraints. The authors prove that from a stationary point, the LG projection method can find a better point. Numerical examples also show that the LG method has a potential to escape the stationary point of optimization problems. %K Constrained equations %K Lagrangian globalization method %K Stationary point %K Global convergence
约束方程组 %K 拉格朗日全局算法 %K 稳定点 %K 全局收敛. %K 非线性 %K 约束方程 %K 拉格朗日 %K 投影方法 %K Equations %K Constrained %K Nonlinear %K Projection %K Methods %K Globalization %K 有效性 %K 验证 %K 数值 %K 理论 %K Lagrangian %K 全局算法 %K 无约束 %K 方程组解 %K 优化问题 %K 极小点 %K 局部 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=6418D9B9FDAE0A67045F026BFD59F628&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=CA4FD0336C81A37A&sid=6700D0D256586E73&eid=6270DC1B5693DDAF&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=0&reference_num=14