%0 Journal Article %T On the Regular Points of Zygmund Differentiable Maps
Zygmund微分映射的正则点 %A Xu Xu %A Zhang Yuntao %A
徐栩 %A 张运涛 %J 数学物理学报(A辑) %D 2008 %I %X The main result of this article is: For any Zygmund class $C^{p,Z}$map $f:R^{n}\rightarrow R^{m}$ if $\frac{n-m}{2}\leq p\leq n-m-1$, then either mes$K_{f}>0$ or mes$C_{f}>0$. It provides a partial answer of the Hirsch Problem. %K Regular points %K Differentiability %K Zygmund class
正则点 %K 可微性 %K Zygmund类. %K 微分 %K 映射 %K 正则点 %K Maps %K Differentiable %K 问题 %K 结果 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=C6B3A8FDD2F909A619215B81F7CD014E&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=CA4FD0336C81A37A&sid=6209D9E8050195F5&eid=75A1FA2A8D54BD4B&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=0&reference_num=8