%0 Journal Article
%T On the Regular Points of Zygmund Differentiable Maps
Zygmund微分映射的正则点
%A Xu Xu
%A Zhang Yuntao
%A
徐栩
%A 张运涛
%J 数学物理学报(A辑)
%D 2008
%I
%X The main result of this article is: For any Zygmund class $C^{p,Z}$map $f:R^{n}\rightarrow R^{m}$ if $\frac{n-m}{2}\leq p\leq n-m-1$, then either mes$K_{f}>0$ or mes$C_{f}>0$. It provides a partial answer of the Hirsch Problem.
%K Regular points
%K Differentiability
%K Zygmund class
正则点
%K 可微性
%K Zygmund类.
%K 微分
%K 映射
%K 正则点
%K Maps
%K Differentiable
%K 问题
%K 结果
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=C6B3A8FDD2F909A619215B81F7CD014E&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=CA4FD0336C81A37A&sid=6209D9E8050195F5&eid=75A1FA2A8D54BD4B&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=0&reference_num=8