%0 Journal Article
%T Stability and Traveling Fronts in Lotka-Volterra Cooperation Model with Stage Structure
具有阶段结构的Lotka-Volterra合作系统的稳定性和行波解
%A Wu Shiliang
%A Li Wantong
%A
吴事良
%A 李万同
%J 数学物理学报(A辑)
%D 2008
%I
%X In this paper, the authors derive and study a delayed diffusion system, which models the interaction between the two species, the adult members ofwhich are in cooperation. By using the method of sub- and super-solutions due to Redlinger, we show that the diffusive delay model generates simple global dynamics, i.e., the zero steady state and the boundary equilibria are linear unstable and the unique positive steady state is globally asymptotically stable. We also establish the existence of traveling wave fronts connecting the zero solution of this equation with the unique positive steady state.The approach used in this paper is the upper-lower solutions technique and the monotone iteration recently developed by Wang, Li and Ruan for reaction-diffusion systems with spatio-temporal delays.
%K Cooperationzz
%K time delayzz
%K traveling wave frontzz
%K global stabilityzz
%K stage structurezz
%K reaction-diffusion equationzz
合作
%K 时滞
%K 波前解
%K 全局稳定性
%K 阶段结构
%K 反应扩散方程
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=6A6672F2B27A45F53DD01124008671C9&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=38B194292C032A66&sid=B1989ED92BA7E896&eid=1A033C02510EFBE6&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=1&reference_num=18