%0 Journal Article %T Exponential Stability in Mean Square for Stochastic Hopfield Delay Neural Networks: an LMI Approach
随机Hopfield时滞神经网络均方指数稳定性: LMI方法 %A Chen Wuhua %A Lu Xiaomei %A Li Qunhong %A Guan Zhihong %A
陈武华 %A 卢小梅 %A 李群宏 %A 关治洪 %J 数学物理学报(A辑) %D 2007 %I %X By using a technique of model transformation of the system, a new type of Lyapunov functional is introduced. By applying this new Lyapunov functional, a novel delay-dependent sufficient condition of exponential stability in mean square for stochastic Hopfield delay neural networks is derived in terms of linear matrix inequalities (LMIs). A delay-independent sufficient condition is also presented. Numerical examples show that the proposed method is less conservative than the previous ones. %K Stochastic Hopneld neural networks %K Time-delay %K Exponential stability in mean square %K Linear matrix inequality (LMI)
随机神经网络 %K 时滞 %K 均方指数稳定性 %K 线性矩阵不等式 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=1CFB1D17EF912377&yid=A732AF04DDA03BB3&vid=DB817633AA4F79B9&iid=CA4FD0336C81A37A&sid=91C9056D8E8856E0&eid=7555FB9CC973F695&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=0&reference_num=20