%0 Journal Article %T Two-Weight Integral Inequalities for Conjugate ${\cal A}$-Harmonic Tensors
共轭 A -调和张量的双权积分不等式 %A Gao Hongya %A Hou Lanru %A
高红亚 %A 侯兰茹 %J 数学物理学报(A辑) %D 2008 %I %X In this paper, the authors first introduce a newweight: $A^{\lambda_{3}}_{r}(\lambda_{1},\lambda_{2},\Omega)$-weight,and prove the local weighted integral inequalities for conjugate${\cal A}$ -harmonic tensors. Then, as an application of the localresult, the authors prove a global weighted integral inequality forconjugate ${\cal A}$-harmonic tensors in a bounded domain $\Omega$,which can be regarded as generalizations of the classical results.Finally, the authors give some applications of the above results toquasiregular mappings. %K Conjugate ${\cal A}$-harmonic tensorzz %K $A^{\lambda_{3}}_{r}(\lambda_{1} %K \lambda_{2} %K \Omega)$-weightzz %K Weighted integral inequalityzz %K Quasiregular mappingzz
共轭A-调和张量 %K Aλ3γ(λ1λ2Ω)-权 %K 加权积分不等式 %K 拟正则映射. %K 共轭 %K 张量 %K 双权 %K 加权积分不等式 %K Conjugate %K Inequalities %K 映射理论 %K 正则 %K 有界区域 %K 应用 %K 结果 %K 局部 %K 权函数 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=41C97B161BF8D079B6177FD7A9BD003D&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=0B39A22176CE99FB&sid=4B168891B5E5FB30&eid=375BEEEA164CFE59&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=0&reference_num=18