%0 Journal Article
%T Two-Weight Integral Inequalities for Conjugate ${\cal A}$-Harmonic Tensors
共轭 A -调和张量的双权积分不等式
%A Gao Hongya
%A Hou Lanru
%A
高红亚
%A 侯兰茹
%J 数学物理学报(A辑)
%D 2008
%I
%X In this paper, the authors first introduce a newweight: $A^{\lambda_{3}}_{r}(\lambda_{1},\lambda_{2},\Omega)$-weight,and prove the local weighted integral inequalities for conjugate${\cal A}$ -harmonic tensors. Then, as an application of the localresult, the authors prove a global weighted integral inequality forconjugate ${\cal A}$-harmonic tensors in a bounded domain $\Omega$,which can be regarded as generalizations of the classical results.Finally, the authors give some applications of the above results toquasiregular mappings.
%K Conjugate ${\cal A}$-harmonic tensorzz
%K $A^{\lambda_{3}}_{r}(\lambda_{1}
%K \lambda_{2}
%K \Omega)$-weightzz
%K Weighted integral inequalityzz
%K Quasiregular mappingzz
共轭A-调和张量
%K Aλ3γ(λ1λ2Ω)-权
%K 加权积分不等式
%K 拟正则映射.
%K 共轭
%K 张量
%K 双权
%K 加权积分不等式
%K Conjugate
%K Inequalities
%K 映射理论
%K 正则
%K 有界区域
%K 应用
%K 结果
%K 局部
%K 权函数
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=41C97B161BF8D079B6177FD7A9BD003D&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=0B39A22176CE99FB&sid=4B168891B5E5FB30&eid=375BEEEA164CFE59&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=0&reference_num=18