%0 Journal Article %T Analysis of an acellular pigskin based nerve scaffold
PLGA/ECM神经支架性质的体外评价 %A Bin Liu %A Jinxing Ke %A Shaoxi Cai %A Xiaokun Li %A Lu Zhang %A Wenqi Chen %A Yaoguang Zhang %A
刘彬 %A 可金星 %A 蔡绍皙 %A 李校堃 %A 张路 %A 陈文琦 %A 张耀光 %J 生物工程学报 %D 2012 %I %X A scaffold fabricated with lysine/nerve growth factor (NGF)/poly (lactic acid coglycolic acid) copolymer (PLGA) and acellular pigskin was evaluated in vitro as a potential artificial nerve scaffold. Properties of the scaffold such as microstructure, mechanical property, degradation behavior in PBS and water, Schwann cell adhesion property, and release of NGF were investigated. Results showed PLGA had permeated into the porous structure of acellular pigskin; its breaking strength was 8.308 MPa, breaking extensibility was 38.98%, elastic modulus was 97.27 MPa. The porosities of the scaffold ranged from 68.3% to 81.2% with densities from 0.62 g/cm3 to 0.68 g/cm3. At 4 weeks of degradation in vitro, maximum mass loss ratio was 43.3%. The release of NGF could still be detected on the 30th day, and its accumulative release rate was 38%. Lysine added into the scaffold neutralized the acidoid preventing degradation of PLGA to maintain a solution pH value. Schwann cells had grown across the scaffold after co-cultivation for 15 days. These in vitro properties of the pigskin based composite might indicate its potentiality to be an artificial nerve scaffold. %K pigskin %K extracellular matrix (ECM) %K peripheral nerve %K poly (lactic acid co glycolic acid) copolymer (PLGA) %K nerve growth factor (NGF) %K lysine %K schwann cells
猪皮 %K 细胞外基质 %K 周围神经 %K 聚乳酸聚羟基乙酸共聚物 %K 神经生长因子 %K 赖氨酸 %K 雪旺氏细胞 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=90BA3D13E7F3BC869AC96FB3DA594E3FE34FBF7B8BC0E591&jid=A66E90C274451689E69F6F0291467824&aid=A9B497033F261F940FA866A9476545F6&yid=99E9153A83D4CB11&vid=D3E34374A0D77D7F&iid=38B194292C032A66&sid=31125890FF093250&eid=FA88DCCE84EA0A56&journal_id=1000-3061&journal_name=生物工程学报&referenced_num=0&reference_num=0