%0 Journal Article %T BLIND SOURCE SEPARATION FOR FMRI SIGNALS USING A NEW INDEPENDENT COMPONENT ANALYSIS ALGORITHM
新的独立成分分析算法实现功能磁共振成像信号的盲分离 %A WU Zhen-hua %A SHI Zhen-wei %A TANG Huan-wen %A TANG Yi-yuan %A
武振华 %A 史振威 %A 唐焕文 %A 唐一源 %J 生物物理学报 %D 2004 %I %X In order to separate independent components (task-related signal and other noises) from functional magnetic reasonance imaging(fMRI)signals, a new independent component analysis algorithm was used. In contrast to fastICA, the algorithm reduced computation and raised speed of operation. It also separated independent components from fMRI signals very well. %K Newton algorithm %K Independent component analysis %K Functional magnetic reasonanceimaging %K Blind source separation
牛顿型算法 %K 独立成分分析 %K 功能磁共振成像 %K 盲源分离 %K 信号 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=90BA3D13E7F3BC869AC96FB3DA594E3FE34FBF7B8BC0E591&jid=E0C9D9BBED813D6674AC13E942EAC86D&aid=C84501BF98ECC328&yid=D0E58B75BFD8E51C&vid=A04140E723CB732E&iid=38B194292C032A66&sid=847B14427F4BF76A&eid=C29816B2656377A7&journal_id=1000-6737&journal_name=生物物理学报&referenced_num=3&reference_num=11