%0 Journal Article %T Optimization of inductively coupled plasma etching for low nanometer scale air-hole arrays in two-dimensional GaAs-based photonic crystals
感应耦合等离子刻蚀二维低纳米级GaAs基光子晶体的过程优化研究 %A Peng Yinsheng %A Ye Xiaoling %A Xu Bo %A Jin Peng %A Niu Jiebin %A Jia Rui %A Wang Zhanguo %A
彭银生 %A 叶小玲 %A 徐波 %A 金鹏 %A 牛洁斌 %A 贾锐 %A 王占国 %J 半导体学报 %D 2010 %I %X This paper mainly describes fabrication of two-dimensional GaAs-based photonic crystals with low nanometer scale air-hole arrays using an inductively coupled plasma (ICP) etching system. The sidewall profile and surface characteristics of the photonic crystals are systematically investigated as a function of process parameters including ICP power, RF power and pressure. Various ICP powers have no significant effect on the verticality of air-hole sidewall and surface smoothness. In contrast, RF power and chamber pressure play a remarkable role in improving sidewall verticality and surface characteristics of photonic crystals indicating different etching mechanisms for low nanometer scale photonic crystals. The desired photonic crystals have been achieved with hole diameters as low as 130 nm with smooth and vertical profiles by developing a suitable ICP processes. The influence of the ICP parameters on this device system are analyzed mainly by scanning electron microscopy. This fabrication approach is not limited to GaAs material, and may be efficiently applied to the development of most two-dimensional photonic crystal slabs. %K photonic crystal %K GaAs %K inductively coupled plasma etching %K scanning electron microscopy
光子晶体 %K GaAs %K 感应耦合等离子刻蚀 %K 扫描电镜 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=1319827C0C74AAE8D654BEA21B7F54D3&jid=025C8057C4D37C4BA0041DC7DE7C758F&aid=1B0C8B0ED2AAF81E399F8F36A2470263&yid=140ECF96957D60B2&vid=4AD960B5AD2D111A&iid=CA4FD0336C81A37A&sid=F32C750D6DBECF51&eid=94C357A881DFC066&journal_id=1674-4926&journal_name=半导体学报&referenced_num=0&reference_num=0