%0 Journal Article %T Spectral Efficient Coding Schemes in Optical Communications %J International Journal of Optoelectronic Engineering %@ 2167-731X %D 2012 %I %R 10.5923/j.ijoe.20120204.01 %X Achieving high spectral efficiency in optical transmissions has recently attracted much attention, aiming to satisfy the ever increasing demand for high data rates in optical fiber communications. Therefore, strong Forward Error Correction (FEC) coding in combination with multilevel modulation schemes is mandatory to approach the channel capacity of the transmission link. In this paper we give design rules on the joint optimization of coding and signal constellations under practical considerations. We give trade-offs between spectral efficiency and hardware complexity, by comparing coding schemes using capacity achieving constellations with bit-interleaved coded modulation and iterative decoding (BICM-ID) against applying conventional square quadrature amplitude modulation (QAM) constellations but employing powerful low complexity low-density parity-check (LDPC) codes. Both schemes are suitable for optical single carrier (SC) and optical orthogonal frequency-division multiplexing (OFDM) transmission systems, where we consider the latter one in this paper, due to well-studied equalization techniques in wireless communications. We numerically study the performance of different coded modulation formats in optical OFDM transmission, showing that for a fiber optical transmission link of 960 km reach the net spectral efficiency can be increased by ˇÖ0.4 bit/s/Hz to 8.61 bit/s/Hz at a post FEC BER of <10-15 by using coded optimized constellations instead of coded 64-QAM.In this paper we propose a high spectral efficient coded modulation scheme for implementation in future optical communication systems operating at data rates beyond 400 Gb/s. In detail, we adapt the ˇ°Turbo Principleˇ± to BICM-ID[8] and combine it with a high-rate outer algebraic code to obtain a post-FEC BER <10-15, which is a typical demand in optical transponders. Furthermore we give simple design principles for the design of BICM-ID based on the extrinsic information transfer (EXIT) chart analysis[9]. The optical channel is considered to be weakly-nonlinear. Therefore the proposed techniques are also applicable for single-carrier transmission; however we consider OFDM since it appears to be more appropriate for the high order modulation formats and efficient equalization algorithms that are well established in wireless communications. %K Coherent Communications %K Optical OFDM %K Bit-Interleaved Coded Modulation and Iterative BICM-ID %K Spectral Efficiency %K Capacity Approaching Constellations (IPM) %U http://article.sapub.org/10.5923.j.ijoe.20120204.01.html