%0 Journal Article %T Proteomic analysis revealed alterations of the Plasmodium falciparum metabolism following salicylhydroxamic acid exposure %A Torrentino-Madamet M %A Almeras L %A Travaill¨¦ C %A Sinou V %A Pophillat M %A Belghazi M %A Fourquet P %A Jammes Y %A Parzy D %J Research and Reports in Tropical Medicine %D 2011 %I Dove Medical Press %R http://dx.doi.org/10.2147/RRTM.S23127 %X oteomic analysis revealed alterations of the Plasmodium falciparum metabolism following salicylhydroxamic acid exposure Original Research (2045) Total Article Views Authors: Torrentino-Madamet M, Almeras L, Travaill¨¦ C, Sinou V, Pophillat M, Belghazi M, Fourquet P, Jammes Y, Parzy D Published Date September 2011 Volume 2011:2 Pages 109 - 119 DOI: http://dx.doi.org/10.2147/RRTM.S23127 Marylin Torrentino-Madamet1, Lionel Almeras2, Christelle Travaill¨¦1, V¨¦ronique Sinou1, Matthieu Pophillat3, Maya Belghazi4, Patrick Fourquet3, Yves Jammes5, Daniel Parzy1 1UMR-MD3, Universit¨¦ de la M¨¦diterran¨¦e, Antenne IRBA de Marseille (IMTSSA, Le Pharo), 2Unit¨¦ de Recherche en Biologie et Epid¨¦miologie Parasitaires, Antenne IRBA de Marseille (IMTSSA, Le Pharo), 3Centre d'Immunologie de Marseille Luminy, Institut National de la Sant¨¦ et de la Recherche M¨¦dicale, Centre National de la Recherche Scientifique, Universit¨¦ de la M¨¦diterran¨¦e, 4Centre d'Analyse Prot¨¦omique de Marseille, Institut F¨¦d¨¦ratif de Recherche Jean Roche, Facult¨¦ de M¨¦decine Nord, 5UMR-MD2, Physiologie et Physiopathologie en Conditions d'Oxyg¨¦nations Extr¨ºmes, Institut F¨¦d¨¦ratif de Recherche Jean Roche, Facult¨¦ de M¨¦decine Nord, Marseille, France Objectives: Although human respiratory metabolism is characterized by the mitochondrial electron transport chain, some organisms present a ¡°branched respiratory chain.¡± This branched pathway includes both a classical and an alternative respiratory chain. The latter involves an alternative oxidase. Though the Plasmodium falciparum alternative oxidase is not yet identified, a specific inhibitor of this enzyme, salicylhydroxamic acid (SHAM), showed a drug effect on P. falciparum respiratory function using oxygen consumption measurements. The present study aimed to highlight the metabolic pathways that are affected in P. falciparum following SHAM exposure. Design: A proteomic approach was used to analyze the P. falciparum proteome and determine the metabolic pathways altered following SHAM treatment. To evaluate the SHAM effect on parasite growth, the phenotypic alterations of P. falciparum after SHAM or/and hyperoxia exposure were observed. Results: After SHAM exposure, 26 proteins were significantly deregulated using a fluorescent two dimensional-differential gel electrophoresis. Among these deregulated proteins, some were particularly involved in energetic metabolism. And the combinatory effect of SHAM/hyperoxia seems deleterious for the growth of P. falciparum. Conclusion: Our results indicated that SHAM appears to activate glycolysis and decrease stress defense systems. These data provide a better understanding of parasite biology. %K Plasmodium falciparum %K salicylhydroxamic acid %K hyperoxia %K glycolysis %K proteomic %U https://www.dovepress.com/proteomic-analysis-revealed-alterations-of-the-plasmodium-falciparum-m-peer-reviewed-article-RRTM