%0 Journal Article %T Embedded Direct Search of Optimal Designs for Finite Noise Experiments %A Franziska Schulz %A Kurt Frischmuth %J Archives of Transport %D 2010 %I Versita %R 10.2478/v10174-010-0008-z %X We study experimental designs for the identification of nonlinear model parameters. As optimality criterion we assume minimality of the error in a huge number of identifications run on simulated data, which are generated with known parameters and a given error distribution. The optimal design depends on the nonlinear parameters. We find the optimal solution set by combining a path following strategy and a direct search method. %K parameter identification %K nonlinear regression %K embedding method %K direct search algorithm %U http://versita.metapress.com/content/0q5w178414576530/?p=f91ac98718f04f31b78c6589c48deb5a&pi=7