%0 Journal Article %T On a theorem of Lindel f %A Vladimir Gutlyanskii %A Olli Martio %A Vladimir Ryazanov %J Annales UMCS, Mathematica %D 2011 %I %R 10.2478/v10062-011-0012-7 %X We give a quasiconformal version of the proof for the classical Lindel f theorem: Let f map the unit disk D conformally onto the inner domain of a Jordan curve C. Then C is smooth if and only if arh f'(z) has a continuous extension to D. Our proof does not use the Poisson integral representation of harmonic functions in the unit disk. %K Lindel f theorem %K infinitesimal geometry %K continuous extension to the boundary %K differentiability at the boundary %K conformal and quaisconformal mappings %U http://versita.metapress.com/content/c3653553p7r0014n/?p=9e685f8f8e3c43feac8c2f72770a2544&pi=4