%0 Journal Article %T Optimization of monomethoxy poly(ethylene glycol) grafting on Langerhans islets capsule using response surface method %A Hamideh Aghajani-Lazarjani %A Ebrahim Vasheghani-Farahani %A Sameereh Hashemi-Najafabadi %A Seyed Abbas Shojaosadati %A Saleh Zahediasl %A Taki Tiraihi and Fatemeh Atyabi %J Progress in Biomaterials %D 2013 %I Springer %R 10.1186/2194-0517-2-7 %X Langerhans islet transplantation is a much less invasive approach compared with the pancreas transplantation to 'cure' diabetes. However, destruction of transplanted islets by the immune system is an impediment for a successful treatment. Chemical grafting of monomethoxy poly(ethylene glycol) onto pancreatic islet capsule is a novel approach in islet immunoisolation. The aim of this study was to determine an optimized condition for grafting of monomethoxy poly(ethylene glycol) succinimidyl propionate (mPEG-SPA) on islets capsule. Independent variables such as reaction time, the percentage of longer mPEG in the mixture, and polymer concentration were optimized using a three-factor, three-level Box-Behnken statistical design. The dependent variable was IL-2 (interleukin-2) secretion of lymphocytes co-cultured with PEGylated or uncoated control islets for 7 days co-culturing. A mathematical relationship is obtained which explained the main and quadratic effects and the interaction of factors which affected IL-2 secretion. Response surface methodology predicted the optimized values of reaction time, the percentage of longer mPEG in the mixture, and polymer concentration of 60 min to be 63.7% mPEG10 and 22 mg/mL, respectively, for the minimization of the secreted IL-2 as response. Islets which were PEGylated at this condition were transplanted to diabetic rats. The modified islets could survive for 24 days without the aid of any immunosuppressive drugs and it is the longest survival date reported so far. However, free islets (unmodified islets as control) are completely destroyed within 7 days. These results strongly suggest that this new protocol provides an effective clinical means of decreasing transplanted islet immunogenicity. %U http://www.progressbiomaterials.com/content/2/1/7/abstract