%0 Journal Article %T Embedded CMC Hypersurfaces on Hyperbolic Spaces %A PERDOMO %A OSCAR %J Revista Colombiana de Matem¨¢ticas %D 2011 %I Universidad Nacional de Colombia and Sociedad Colombiana de Matem¨¢ticas %X in this paper we will prove that for every integer n>1, there exists a real number h0<-1 such that every h¡Ê (-¡̃,h0) can be realized as the mean curvature of an embedding of hn-1\times s1 in the n+1-dimensional space hn+1. for n=2 we explicitly compute the value h0. for a general value n, we provide a function ¦În defined on (-¡̃,-1), which is easy to compute numerically, such that, if ¦În(h)>-2¦Đ, then, h can be realized as the mean curvature of an embedding of hn-1\times s1 in the (n+1)-dimensional space hn+1. %K principal curvatures %K hyperbolic spaces %K constant mean curvature %K cmc %K embeddings. %U http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0034-74262011000100006&lng=en&nrm=iso&tlng=en