全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Dehaze Enhancement Algorithm Based on Retinex Theory for Aerial Images Combined with Dark Channel

DOI: 10.4236/oalib.1106280, PP. 1-12

Subject Areas: Image Processing, Computer graphics and visualization

Keywords: Image Dehazing, Aerial Image, Retinex Algorithm Model, Atmospheric Scattering Model, Dark Channel Dehazing

Full-Text   Cite this paper   Add to My Lib

Abstract

In order to improve the visual effect of aerial images in foggy weather, a Retinex defogging algorithm combining dark channel priors is proposed to solve the phenomenon of insufficient defogging and over-enhancement of aerial defogging in Reinex defogging. First, the foggy original image is decomposed into foggy incident light components and foggy reflected light components by Retinex theory. Then, the principle of foggy image degradation is analyzed by an atmospheric scattering model, and the dark channel prior defogging algorithm is used to obtain the incident light component and reflected light component after defogging. Finally, a fog-free image was restored through the Reitnex model. The effectiveness of this algorithm is verified through experiments. By comparing and analyzing this algorithm with other defogging algorithms, this algorithm has higher contrast and color fidelity.

Cite this paper

Liu, X. , Liu, C. , Lan, H. and Xie, L. (2020). Dehaze Enhancement Algorithm Based on Retinex Theory for Aerial Images Combined with Dark Channel. Open Access Library Journal, 7, e6280. doi: http://dx.doi.org/10.4236/oalib.1106280.

References

[1]  Li, S., Ren, W., Zhang, J., et al. (2019) Single Image Rain Removal via a Deep Decomposition-Composition Network. Computer Vision and Image Understanding. https://doi.org/10.1016/j.cviu.2019.05.003
[2]  Lu, H., Li, Y., Nakashima, S., et al. (2016) Single Image Dehazing through Improved Atmospheric Light Estimation. Multimedia Tools and Applications, 75, 17081-17096. https://doi.org/10.1007/s11042-015-2977-7
[3]  Fattal, R. (2008) Single Image Dehazing. ACM Transactions on Graphics, 27, 1-9. https://doi.org/10.1145/1360612.1360671
[4]  He, K.M., Sun, J. and Tang, X. (2011) Single Image Haze Removal Using Dark Channel Prior. IEEE Transcations on Pattern Analysis & Machine Intelligence, 33, 2341-2353. https://doi.org/10.1109/TPAMI.2010.168
[5]  Huang, D.R., et al. (2014) An Improved Image Clearness Algorithm Based on Dark Channel Prior. Proceedings of the 33rd Chinese Control Conference, Nanjing, 28-30 July 2014. https://doi.org/10.1109/ChiCC.2014.6896219
[6]  Rajiv, K., et al. (2019) Fog Removal in Images Using Improved Dark Channel Prior and Contrast Limited Adaptive Histogram Equalization. Multimedia Tools and Applications, 78, 23281-23307. https://doi.org/10.1007/s11042-019-7574-8
[7]  Wang, W.C. and Yuan, X.H. (2017) Recent Advances in Image Dehazing. IEEE/CAA Journal of Automatica Sinica, 4, 410-436. https://doi.org/10.1109/JAS.2017.7510532
[8]  Sonali, S.S., Singh, A.K., Ghrera, S.P. and Elhoseny, M. (2018) An Approach for De-Noising and Contrast Enhancement of Retinal Fundus Image Using CLAHE. Optics and Laser Technology, 110, 87-98. https://doi.org/10.1016/j.optlastec.2018.06.061
[9]  Jobson, D.J., Rahman, Z.-U., Woodell, G., et al. (1997) Properties and Performance of a Center/Surround Retinex. IEEE Transactions on Image Processing, 6, 451-462. https://doi.org/10.1109/83.557356
[10]  Patil, M.D.V., Sutar, M.S.G. and Mulla, M.A.N. (2013) Automatic Image Enhancement for Better Visualization Using Retinex Technique. International Journal of Scientific and Research Publications, 3, No. 6.
[11]  Livingston, M.A., Garrett, C.R. and Ai, Z. (2011) Image Processing for Human Understanding in Low-Visibility. Naval Research Lab Information Technology DIV, Washington DC. https://doi.org/10.21236/ADA609988
[12]  Liu, C.J., Cheng, I., Zhang, Y. and Basu, A. (2017) Enhancement of Low Visibility Aerial Images Using Histogram Truncation and an Explicit Retinex Representation for Balancing Contrast and Color Consistency. Journal of Photogrammetry and Remote Sensing, 128, 16-26. https://doi.org/10.1016/j.isprsjprs.2017.02.016
[13]  Pu, Y.F., Siarry, P., Chatterjee, A., et al. (2017) A Fractional-Order Variational Framework for Retinex: Fractional-Order Partial Differential Equation-Based Formulation for Multi-Scale Nonlocal Contrast Enhancement with Texture Preserving. IEEE Transactions on Image Processing, 27, 1214-1229. https://doi.org/10.1109/TIP.2017.2779601
[14]  Suárez, P.L., et al. (2018) Deep Learning Based Single Image Dehazing. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, 18-22 June 2018. https://doi.org/10.1109/CVPRW.2018.00162
[15]  Tarel, J.P. and Nicolas, H. (2009) Fast Visibility Restoration from a Single Color or Gray Level Image. IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, 27 September- 4 October 2009. https://doi.org/10.1109/ICCV.2009.5459251

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413