%0 Journal Article %T Degenerate elliptic operators in one dimension %A Derek W. Robinson %A Adam Sikora %J Mathematics %D 2009 %I arXiv %X Let $H$ be the symmetric second-order differential operator on $L_2(\Ri)$ with domain $C_c^\infty(\Ri)$ and action $H\varphi=-(c \varphi')'$ where $ c\in W^{1,2}_{\rm loc}(\Ri)$ is a real function which is strictly positive on $\Ri\backslash\{0\}$ but with $c(0)=0$. We give a complete characterization of the self-adjoint extensions and the submarkovian extensions of $H$. In particular if $\nu=\nu_+\vee\nu_-$ where $\nu_\pm(x)=\pm\int^{\pm 1}_{\pm x} c^{-1}$ then $H$ has a unique self-adjoint extension if and only if $\nu\not\in L_2(0,1)$ and a unique submarkovian extension if and only if $\nu\not\in L_\infty(0,1)$. In both cases the corresponding semigroup leaves $L_2(0,\infty)$ and $L_2(-\infty,0)$ invariant. In addition we prove that for a general non-negative $ c\in W^{1,\infty}_{\rm loc}(\Ri)$ the corresponding operator $H$ has a unique submarkovian extension. %U http://arxiv.org/abs/0909.0567v1