%0 Journal Article %T New Nonsmooth Equations-Based Algorithms for -Norm Minimization and Applications %A Lei Wu %A Zhe Sun %J Journal of Applied Mathematics %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/139609 %X Recently, Xiao et al. proposed a nonsmooth equations-based method to solve the -norm minimization problem (2011). The advantage of this method is its simplicity and lower storage. In this paper, based on new nonsmooth equations reformulation, we investigate new nonsmooth equations-based algorithms for solving -norm minimization problems. Under mild conditions, we show that the proposed algorithms are globally convergent. The preliminary numerical results demonstrate the effectiveness of the proposed algorithms. 1. Introduction We consider the -norm minimization problem where , , , and is a nonnegative parameter. Throughout the paper, we use and to denote the Euclidean norm and the -norm of vector , respectively. Problem (1.1) has many important practical applications, particularly in compressed sensing (abbreviated as CS) [1] and image restoration [2]. It can also be viewed as a regularization technique to overcome the ill-conditioned, or even singular, nature of matrix , when trying to infer from noiseless observations or from noisy observations , where is the white Gaussian noise of variance [3¨C5]. The convex optimization problem (1.1) can be cast as a second-order cone programming problem and thus could be solved via interior point methods. However, in many applications, the problem is not only large scale but also involves dense matrix data, which often precludes the use and potential advantage of sophisticated interior point methods. This motivated the search of simpler first-order algorithms for solving (1.1), where the dominant computational effort is a relatively cheap matrix-vector multiplication involving and . In the past few years, several first-order algorithms have been proposed. One of the most popular algorithms falls into the iterative shrinkage/thresholding (IST) class [6, 7]. It was first designed for wavelet-based image deconvolution problems [8] and analyzed subsequently by many authors, see, for example, [9¨C11]. Figueiredo et al. [12] studied the gradient projection and Barzilai-Borwein method [13] (denoted by GPSR-BB) for solving (1.1). They reformulated problem (1.1) as a box-constrained quadratic program and solved it by a gradient projection and Barzilai-Borwein method. Wright et al. [14] presented sparse reconstruction algorithm (denoted by SPARSA) to solve (1.1). Yun and Toh [15] proposed a block coordinate gradient descent algorithm for solving (1.1). Yang and Zhang [16] investigated alternating direction algorithms for solving (1.1). Quite recently, Xiao et al. [17] developed a nonsmooth equations-based algorithm (called %U http://www.hindawi.com/journals/jam/2012/139609/