全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Phenocopies: Mimics of Inborn Errors of Immunity

DOI: 10.4236/oalib.1106041, PP. 1-22

Subject Areas: Allergy & Clinical Immunology, Immunology

Keywords: Phenocopies, Primary, Deficiency, Immunologic Deficiency Syndrome

Full-Text   Cite this paper   Add to My Lib

Abstract

A phenocopy is defined as a clinical non-inherited phenotype in an indi-vidual, with environmental induction, which is identical to the genetically determined phenotype of another. Until February 2017, the IUIS (Interna-tional Union of Immunological Societies) reported in its classification 354 innate immunity errors and a final group (classification table IX) with con-ditions that are not part of the innate alterations and are called phenocopies. These are classified into two types, the associated with somatic mutations and those associated with auto-antibodies. The phenotypes that occur by any of the mechanisms mentioned are complex and varied. It is necessary to know the clinical manifestations of the pathologies classified in this group to enrich the possible differential diagnoses in individuals with suspected immunodeficiency.

Cite this paper

Alonso-Bello, C. D. , Espinosa-Padilla, S. E. , Temix-Delfin, M. D. , Lozano-Patino, F. , Castaneda-Avila, V. I. , Vargas-Camano, M. E. and Castrejón-Vázquez, M. I. (2020). Phenocopies: Mimics of Inborn Errors of Immunity. Open Access Library Journal, 7, e6041. doi: http://dx.doi.org/10.4236/oalib.1106041.

References

[1]  Baum, P., Schmid, R., Ittrich, C., Rust, W., Fundel-Clemens, K., Siewert, S., et al. (2010) Phenocopy—A Strategy to Qualify Chemical Compounds during Hit-to-Lead and/or Lead Optimization. PLoS ONE, 5, e14272.
https://doi.org/10.1371/journal.pone.0014272
[2]  Lescai, F. and Franceschi, C. (2010) The Impact of Phenocopy on the Genetic Analysis of Complex Traits. PLoS ONE, 5, e11876.
https://doi.org/10.1371/journal.pone.0011876
[3]  Bousfiha, A., Jeddane, L., Picard, C., Ailal, F., Bobby-Gaspar, H., Al-Herz, W., et al. (2018) The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. Journal of Clinical Immunology, 38, 129-143.
https://doi.org/10.1007/s10875-017-0465-8
[4]  Picard, C., Bobby-Gaspar, H., Al-Herz, W., Bousfiha, A., Casanova, J.L., Chatila, T., et al. (2018) International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. Journal of Clinical Immunology, 38, 96-128. https://doi.org/10.1007/s10875-017-0464-9
[5]  Clark, D.P., Pazdernik, N.J. and McGehee, M.R. (2019) Mutations and Repair. In: Molecular Biology, Elsevier, Amsterdam, 832-879.
https://doi.org/10.1016/B978-0-12-813288-3.00026-4
[6]  Milholland, B., Dong, X., Zhang, L., Hao, X., Suh, Y. and Vijg, J. (2017) Differences between Germline and Somatic Mutation Rates in Humans and Mice. Nature Communications, 8, Article No. 15183. https://doi.org/10.1038/ncomms15183
[7]  Nabhani, S., Honscheid, A., Oommen, P.T., Fleckenstein, B., Schaper, J., Kuhlen, M., et al. (2014) A Novel Homozygous Fas Ligand Mutation Leads to Early Protein Truncation, Abrogation of Death Receptor and Reverse Signaling and a Severe Form of the Autoimmune Lymphoproliferative Syndrome. Clinical Immunology, 155, 231-237. https://doi.org/10.1016/j.clim.2014.10.006
[8]  Li, P., Huang, P., Yang, Y., Hao, M., Peng, H. and Li, F. (2016) Updated Understanding of Autoimmune Lymphoproliferative Syndrome (ALPS). Clinical Reviews in Allergy & Immunology, 50, 55-63.
https://doi.org/10.1007/s12016-015-8466-y
[9]  Oliveira, J.B., Bleesing, J.J., Dianzani, U., Fleisher, T.A., Jaffe, E.S., Lenardo, M.J., et al. (2010) Revised Diagnostic Criteria and Classification for the Autoimmune Lymphoproliferative Syndrome (ALPS): Report from the 2009 NIH International Workshop. Blood, 116, e35-e40. https://doi.org/10.1182/blood-2010-04-280347
[10]  Palmisani, E., Miano, M., Micalizzi, C., Calvillo, M., Pierri, F., Terranova, P., et al. (2019) Clinical Features and Therapeutic Challenges of Cytopenias Belonging to Alps and Alps-Related (ARS) Phenotype. British Journal of Haematology, 184, 861-864. https://doi.org/10.1111/bjh.15178
[11]  Holzelova, E., Vonarbourg, C., Stolzenberg, M.C., Arkwright, P.D., Selz, F., Prieur, A.M., et al. (2004) Autoimmune Lymphoproliferative Syndrome with Somatic Fas Mutations. The New England Journal of Medicine, 351, 1409-1418.
https://doi.org/10.1056/NEJMoa040036
[12]  Dowdell, K.C., Niemela, J.E., Price, S., Davis, J., Hornung, R.L., Oliveira, J.B., et al. (2010) Somatic FAS Mutations Are Common in Patients with Genetically Undefined Autoimmune Lymphoproliferative Syndrome. Blood, 115, 5164-5169.
https://doi.org/10.1182/blood-2010-01-263145
[13]  Martínez-Feito, A., Melero, J., Mora-Díaz, S., Rodríguez-Vigil, C., Elduayen, R., González-Granado, L.I., et al. (2016) Autoimmune Lymphoproliferative Syndrome Due to Somatic FAS Mutation (ALPS-sFAS) Combined with a Germline Caspase-10 (CASP10) Variation. Immunobiology, 221, 40-47.
https://doi.org/10.1016/j.imbio.2015.08.004
[14]  García-García, G.M., Bureo-Dacal, J.C., Suárez-Varela Pineda, S. and Elduayen Izaguirre, R. (2015) Adult Onset Autoimmune Lymphoproliferative Syndrome Due to Somatic FAS Mutation. Internal Medicine Journal, 45, 462-464.
https://doi.org/10.1111/imj.12714
[15]  Matson, D.R. and Yang, D.T. (2019) Autoimmune Lymphoproliferative Syndrome: An Overview. Archives of Pathology & Laboratory Medicine.
https://doi.org/10.5858/arpa.2018-0190-RS
[16]  Rieux-Laucat, F., Magérus-Chatinet, A. and Neven, B. (2018) The Autoimmune Lymphoproliferative Syndrome with Defective FAS or FAS-Ligand Functions. Journal of Clinical Immunology, 38, 558-568.
https://doi.org/10.1007/s10875-018-0523-x
[17]  Barzaghi, F., Minniti, F., Mauro, M., Bortoli, M.D., Balter, R., Bonetti, E., et al. (2019) ALPS-Like Phenotype Caused by ADA2 Deficiency Rescued by Allogeneic Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 9, 2767.
https://doi.org/10.3389/fimmu.2018.02767
[18]  Rao, V.K., Price, S., Perkins, K., Aldridge, P., Tretler, J., Davis, J., et al. (2009) Use of Rituximab for Refractory Cytopenias Associated with Autoimmune Lymphoproliferative Syndrome (ALPS). Pediatric Blood & Cancer, 52, 847-852.
https://doi.org/10.1002/pbc.21965
[19]  Oliveira, J.B., Bidere, N., Niemela, J.E., Zheng, L., Sakai, K., Nix, C.P., et al. (2007) NRAS Mutation Causes a Human Autoimmune Lymphoproliferative Syndrome. Proceedings of the National Academy of Sciences, 104, 8953-8958.
https://doi.org/10.1073/pnas.0702975104
[20]  Calvo, K.R., Price, S., Braylan, R.C., Oliveira, J.B., Lenardo, M., Fleisher, T.A., et al. (2015) JMML and RALD (Ras-Associated Autoimmune Leukoproliferative Disorder): Common Genetic Etiology Yet Clinically Distinct Entities. Blood, 125, 2753-2758. https://doi.org/10.1182/blood-2014-11-567917
[21]  Olson, M.F. and Marais, R. (2000) Ras Protein Signalling. Seminars in Immunology, 12, 63-73. https://doi.org/10.1006/smim.2000.0208
[22]  Ma, P., Magut, M., Faller, D.V. and Chen, C.Y. (2002) The Role of Ras in T Lymphocyte Activation. Cellular Signalling, 14, 849-859.
https://doi.org/10.1016/S0898-6568(02)00029-3
[23]  Ragotte, R.J., Dhanrajani, A., Pleydell-Pearce, J., Del Bel, K.L., Tarailo-Graovac, M., van Karnebeek, C., et al. (2017) The Importance of Considering Monogenic Causes of Au-toimmunity: A Somatic Mutation in KRAS Causing Pediatric Rosai-Dorfman Syndrome and Systemic Lupus Erythematosus. Clinical Immunology, 175, 143-146.
https://doi.org/10.1016/j.clim.2016.12.006
[24]  Scheffzek, K., Ahmadian, M.R., Kabsch, W., Wiesmüller, L., Lautwein, A., Schmitz, F., et al. (1997) The Ras-RasGAP Complex: Structural Basis for GTPase Activation and Its Loss in Oncogenic Ras Mutants. Science, 277, 333-338.
https://doi.org/10.1126/science.277.5324.333
[25]  Malumbres, M. and Barbacid, M. (2003) RAS Oncogenes: The First 30 Years. Nature Reviews Cancer, 3, 459-465. https://doi.org/10.1038/nrc1097
[26]  Giacaman, A., Bauzá-Alonso, A., Salinas-Sanz, J.A., Dapena-Díaz, J.L., Ramos-Asensio, R., Ferrés-Ramis, L., et al. (2018) Cutaneous Involvement in an 8-Year-Old Boy with Ras-Associated Autoimmune Leucoproliferative Disorder (RALD). Clinical and Experimental Dermatology, 43, 913-916. https://doi.org/10.1111/ced.13668
[27]  Takagi, M., Shinoda, K., Piao, J., Mitsuiki, N., Takagi, M., Matsuda, K., et al. (2011) Autoimmune Lymphoproliferative Syndrome-Like Disease with Somatic KRAS Mutation. Blood, 117, 2887-2890. https://doi.org/10.1182/blood-2010-08-301515
[28]  Wang, W., Zhou, Y., Zhong, L., Wang, L., Tang, X., Ma, M., et al. (2019) RAS-Associated Autoimmune Leukoproliferative Disease (RALD) Manifested with Early-Onset SLE-Like Syndrome: A Case Series of RALD in Chinese Children. Pediatric Rheumatology, 17, 55. https://doi.org/10.1186/s12969-019-0346-1
[29]  Toyoda, H., Deguchi, T., Iwamoto, S., Kihira, K., Hori, H., Komada, Y., et al. (2018) Weekly Rituximab Followed by Monthly Rituximab Treatment for Autoimmune Disease Associated with RAS-Associated Autoimmune Leukoproliferative Disease. Journal of Pediatric Hematology/Oncology, 40, e516-e518.
https://doi.org/10.1097/MPH.0000000000001276
[30]  Federici, S., Vanoni, F., Ben-Chetrit, E., Cantarini, L., Frenkel, J., Goldbach-Mansky, R., et al. (2019) An International Delphi Survey for the Definition of New Classification Criteria for Familial Mediterranean Fever, Mevalonate Kinase Deficiency, TNF Receptor-Associated Periodic Fever Syndromes, and Cryopyrin-Associated Periodic Syndrome. The Journal of Rheumatology, 46, 429-436.
https://doi.org/10.3899/jrheum.180056
[31]  Bertoni, A., Carta, S., Baldovini, C., Penco, F., Balza, E., Borghini, S., et al. (2019)A Novel Knock-In Mouse Model of Cryopyrin-Associated Periodic Syndromes with Development of Amyloidosis: Therapeutic Efficacy of Proton Pump Inhibitors. Journal of Allergy and Clinical Immunology, 2019, S0091674919307572.
[32]  Booshehri, L.M. and Hoffman, H.M. (2019) CAPS and NLRP3. Journal of Clinical Immunology, 39, 277-286. https://doi.org/10.1007/s10875-019-00638-z
[33]  Keddie, S., Parker, T., Lachmann, H.J. and Ginsberg, L. (2018) Cryopyrin-Associated Periodic Fever Syndrome and the Nervous System. Current Treatment Options in Neurology, 20, 43. https://doi.org/10.1007/s11940-018-0526-1
[34]  Gattorno, M., Hofer, M., Federici, S., Vanoni, F., Bovis, F., Aksentijevich, I., et al. (2019) Classification Criteria for Autoinflammatory Recurrent Fevers. Annals of the Rheumatic Diseases, 78, 1025-1032.
https://doi.org/10.1136/annrheumdis-2019-215048
[35]  Behringer, J., Ryan, M., Miller, M. and Jaju, A. (2019) Magnetic Resonance Imaging Findings in a Patient with Cryopyrin-Associated Periodic Syndrome: A Rare Hereditary Multi-System Inflammatory Disorder. The Neuroradiology Journal.
https://doi.org/10.1177/1971400919863712
[36]  Kilic, H., Sahin, S., Duman, C., Adrovic, A., Barut, K., Turanli, E.T., et al. (2019) Spectrum of the Neurologic Manifestations in Childhood-Onset Cryopyrin-Associated Periodic Syndrome. European Journal of Paediatric Neurology, 23, 466-472.
https://doi.org/10.1016/j.ejpn.2019.03.006
[37]  Nakagawa, K., Gonzalez-Roca, E., Souto, A., Kawai, T., Umebayashi, H., Campistol, J.M., et al. (2015) Somatic NLRP3 Mosaicism in Muckle-Wells Syndrome. A Genetic Mechanism Shared by Different Phenotypes of Cryopyrin-Associated Periodic Syndromes. Annals of the Rheumatic Diseases, 74, 603-610.
https://doi.org/10.1136/annrheumdis-2013-204361
[38]  Lasigliè, D., Mensa-Vilaro, A., Ferrera, D., Caorsi, R., Penco, F., Santamaria, G., et al. (2017) Cryopyrin-Associated Periodic Syndromes in Italian Patients: Evaluation of the Rate of Somatic NLRP3 Mosaicism and Phenotypic Characterization. The Journal of Rheumatology, 44, 1667-1673. https://doi.org/10.3899/jrheum.170041
[39]  Ozen, S. (2018) What’s New in Autoinflammation? Pediatric Nephrology, 34, 2449-2456. http://link.springer.com/10.1007/s00467-018-4155-4
[40]  Eskola, V., Pohjankoski, H., Kroger, L., Aalto, K., Latva, K. and Korppi, M. (2018) Cryopyrin-Associated Periodic Syndrome in Early Childhood Can Be Successfully Treated with Interleukin-1 Blockades. Acta Paediatrica, 107, 577-580.
https://doi.org/10.1111/apa.14217
[41]  Elmi, A.A., Wynne, K., Cheng, I.L., Eleftheriou, D., Lachmann, H.J., Hawkins, P.N., et al. (2019) Retrospective Case Series Describing the Efficacy, Safety and Cost-Effectiveness of a Vial-Sharing Programme for Canakinumab Treatment for Paediatric Patients with Cryopyrin-Associated Periodic Syndrome. Pediatric Rheumatology, 17, 36. https://doi.org/10.1186/s12969-019-0335-4
[42]  Marchica, C., Zawawi, F., Basodan, D., Scuccimarri, R. and Daniel, S.J. (2018) Resolution of Unilateral Sensorineural Hearing Loss in a Pediatric Patient with a Severe Phenotype of Muckle-Wells Syndrome Treated with Anakinra: A Case Report and Review of the Literature. Journal of Otolaryngology—Head & Neck Surgery, 47, 9.
https://doi.org/10.1186/s40463-018-0256-0
[43]  Iida, Y., Wakiguchi, H., Okazaki, F., Nakamura, T., Yasudo, H., Kubo, M., et al. (2019) Early Canakinumab Therapy for the Sensorineural Deafness in a Family with Muckle-Wells Syndrome Due to a Novel Mutation of NLRP3 Gene. Clinical Rheumatology, 38, 943-948. https://doi.org/10.1007/s10067-018-4331-8
[44]  Brogan, P.A., Hofer, M., Kuemmerle-Deschner, J.B., Koné-Paut, I., Roesler, J., Kallinich, T., et al. (2019) Rapid and Sustained Long-Term Efficacy and Safety of Canakinumab in Patients with Cryopyrin-Associated Periodic Syndrome Ages Five Years and Younger. Arthritis & Rheumatology, 71, 1955-1963.
https://doi.org/10.1002/art.41004
[45]  Mulders-Manders, C.M., Kanters, T.A., van Daele, P.L.A., Hoppenreijs, E., Legger, G.E., van Laar, J.A.M., et al. (2018) Decreased Quality of Life and Societal Impact of Cryopyrin-Associated Periodic Syndrome Treated with Canakinumab: A Questionnaire Based Cohort Study. Orphanet Journal of Rare Diseases, 13, 59.
https://doi.org/10.1186/s13023-018-0799-1
[46]  Kontro, M., Kuusanmaki, H., Eldfors, S., Burmeister, T., Andersson, E.I., Bruserud, O., et al. (2014) Novel Activating STAT5B Mutations as Putative Drivers of T-Cell Acute Lymphoblastic Leukemia. Leukemia, 28, 1738-1742.
https://doi.org/10.1038/leu.2014.89
[47]  Maurer, B., Nivarthi, H., Wingelhofer, B., Pham, H.T.T., Schlederer, M., Suske, T., et al. (2019) High Activation of STAT5A Drives Peripheral T-Cell Lymphoma and Leukemia. Haematologica, haematol.2019.216986.
https://doi.org/10.3324/haematol.2019.216986
[48]  Lorenzini, T., Dotta, L., Giacomelli, M., Vairo, D. and Badolato, R. (2017) STAT Mutations as Program Switchers: Turning Primary Immunodeficiencies into Autoimmune Diseases. Journal of Leukocyte Biology, 101, 29-38.
https://doi.org/10.1189/jlb.5RI0516-237RR
[49]  Hwa, V. (2016) STAT5B Deficiency: Impacts on Human Growth and Immunity. Growth Hormone & IGF Research, 28, 16-20.
https://doi.org/10.1016/j.ghir.2015.12.006
[50]  Haapaniemi, E.M., Kaustio, M., Rajala, H.L.M., van Adrichem, A.J., Kainulainen, L., Glumoff, V., et al. (2015) Autoimmunity, Hypogammaglobulinemia, Lymphoproliferation, and Mycobacterial Disease in Patients with Activating Mutations in STAT3. Blood, 125, 639-648. https://doi.org/10.1182/blood-2014-04-570101
[51]  Ma, C.A., Xi, L., Cauff, B., DeZure, A., Freeman, A.F., Hambleton, S., et al. (2017) Somatic STAT5b Gain-of-Function Mutations in Early Onset Nonclonal Eosinophilia, Urticaria, Dermatitis, and Diarrhea. Blood, 129, 650-653.
https://doi.org/10.1182/blood-2016-09-737817
[52]  Blake, S.J. and Teng, M.W.L. (2014) Role of IL-17 and IL-22 in Autoimmunity and Cancer. Actas Dermo-Sifiliográficas, 105, 41-50.
https://doi.org/10.1016/S0001-7310(14)70017-1
[53]  Amatya, N., Garg, A.V. and Gaffen, S.L. (2017) IL-17 Signaling: The Yin and the Yang. Trends in Immunology, 38, 310-322. https://doi.org/10.1016/j.it.2017.01.006
[54]  Ferre, E.M.N., Rose, S.R., Rosenzweig, S.D., Burbelo, P.D., Romito, K.R., Niemela, J.E., et al. (2016) Redefined Clinical Features and Diagnostic Criteria in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. JCI Insight, 1, pii: e88782. https://doi.org/10.1172/jci.insight.88782
[55]  Capalbom, D., De Martinom, L., Giardino, G., Di Mase, R., Di Donato, I., Parenti, G., et al. (2012) Autoimmune Polyendocrinopathy Candidiasis Ectodermal Dystrophy: Insights into Genotype-Phenotype Correlation. International Journal of Endocrinology, 2012, Article ID: 353250. https://doi.org/10.1155/2012/353250
[56]  Guo, C.J., Leung, P.S.C., Zhang, W., Ma, X. and Gershwin, M.E. (2018) Theim-munobiology and Clinical Features of Type 1 Autoimmune Polyglandular Syndrome (APS-1). Autoimmunity Reviews, 17, 78-85.
https://doi.org/10.1016/j.autrev.2017.11.012
[57]  Yamazaki, Y., Yamada, M., Kawai, T., Morio, T., Onodera, M., Ueki, M., et al. (2014) Two Novel Gain-of-Function Mutations of STAT1 Responsible for Chronic Mucocutaneous Candidiasis Disease: Impaired Production of IL-17A and IL-22, and the Presence of Anti-IL-17F Autoantibody. The Journal of Immunology, 193, 4880-4887. https://doi.org/10.4049/jimmunol.1401467
[58]  Sarkadi, A.K., Taskó, S., Csorba, G., Tóth, B., Erdos, M. and Maródi, L. (2014) Autoantibodies to IL-17A May Be Correlated with the Severity of Mucocutaneous Candidiasis in APECED Patients. Journal of Clinical Immunology, 34, 181-193.
https://doi.org/10.1007/s10875-014-9987-5
[59]  Ng, W.F., von Delwig, A., Carmichael, A.J., Arkwright, P.D., Abinun, M., Cant, A.J., et al. (2010) Impaired TH17 Responses in Patients with Chronic Mucocutaneous Candidiasis with and without Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Journal of Allergy and Clinical Immunol-ogy, 126, 1006-1015.e4.
https://doi.org/10.1016/j.jaci.2010.08.027
[60]  Eyerich, K., Foerster, S., Rombold, S., Seidl, H.P., Behrendt, H., Hofmann, H., et al. (2008) Patients with Chronic Mucocutaneous Candidiasis Exhibit Reduced Production of Th17-Associated Cytokines IL-17 and IL-22. Journal of Investigative Dermatology, 128, 2640-2645. https://doi.org/10.1038/jid.2008.139
[61]  Karner, J., Meager, A., Laan, M., Maslovskaja, J., Pihlap, M., Remm, A., et al. (2013) Anti-Cytokine Autoantibodies Suggest Pathogenetic Links with Autoimmune Regulator Deficiency in Humans and Mice: Anti-Cytokine Autoantibodies in Mice and Humans. Clinical & Experimental Immunology, 171, 263-272.
https://doi.org/10.1111/cei.12024
[62]  Kisand, K., Boe-Wolff, A.S., Podkrajsek, K.T., Tserel, L., Link, M., Kisand, K.V., et al. (2010) Chronic Mucocutaneous Candidiasis in APECED or Thymoma Patients Correlates with Autoimmunity to Th17-Associated Cytokines. Journal of Experimental Medicine, 207, 299-308. https://doi.org/10.1084/jem.20091669
[63]  Wu, U.I. and Holland, S.M. (2015) Host Susceptibility to Non-Tuberculous Mycobacterial Infections. The Lancet Infectious Diseases, 15, 968-980.
https://doi.org/10.1016/S1473-3099(15)00089-4
[64]  Browne, S.K. and Holland, S.M. (2010) Immunodeficiency Secondary to Anticytokine Autoantibodies. Current Opinion in Allergy and Clinical Immunology, 10, 534-541. https://doi.org/10.1097/ACI.0b013e3283402b41
[65]  Yasamut, U., Thongkum, W., Moonmuang, S., Sakkhachornphop, S., Chaiwarith, R., Praparattanapan, J., et al. (2019) Neutralizing Activity of Anti-Interferon-γ Autoantibodies in Adult-Onset Immunodeficiency Is Associated with Their Binding Domains. Frontiers in Immunology, 10, 1905.
https://doi.org/10.3389/fimmu.2019.01905
[66]  Merkel, P.A., Lebo, T. and Knight, V. (2019) Functional Analysis of Anti-Cytokine Autoantibodies Using Flow Cytometry. Frontiers in Immunology, 10, 1517.
https://doi.org/10.3389/fimmu.2019.01517
[67]  Chi, C.Y., Lin, C.H., Ho, M.W., Ding. J.Y., Huang, W.C., Shih, H.P., et al. (2016) Clinical Manifestations, Course, and Outcome of Patients with Neutralizing Anti-Interferon-γ Autoantibodies and Disseminated Nontuberculous Mycobacterial Infections. Medicine, 95, e3927. https://doi.org/10.1097/MD.0000000000003927
[68]  Jutivorakool, K., Sittiwattanawong, P., Kantikosum, K., Hurst, C., Kumtornrut, C., Asawanonda, P., et al. (2018) Skin Manifestations in Patients with Adult-Onset Immunodeficiency Due to Anti-Interferon-Gamma Autoantibody: A Relationship with Systemic Infections. Acta Dermato-Venereologica, 98, 742-747.
https://doi.org/10.2340/00015555-2959
[69]  Hong, G.H., Ortega-Villa, A.M., Hunsberger, S., Chetchotisakd, P., Anunnatsiri, S., Mootsikapun, P., et al. (2019) Natural History and Evolution of Anti-Interferon-γ Autoantibody-Associated Immunodeficiency Syndrome in Thailand and the US. Clinical Infectious Diseases, ciz786. https://doi.org/10.1093/cid/ciz786
[70]  Garbers, C., Aparicio-Siegmund, S. and Rose-John, S. (2015) The IL-6/gp130/STAT3 Signaling Axis: Recent Advances towards Specific Inhibition. Current Opinion in Immunology, 34, 75-82. https://doi.org/10.1016/j.coi.2015.02.008
[71]  Tanaka, T., Narazaki, M. and Kishimoto, T. (2014) IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harbor Perspectives in Biology, 6, a016295.
https://doi.org/10.1101/cshperspect.a016295
[72]  Puel, A., Picard, C., Lorrot, M., Pons, C., Chrabieh, M., Lorenzo, L., et al. (2008) Recurrent Staphylococcal Cellulitis and Subcutaneous Abscesses in a Child with Autoantibodies against IL-6. The Journal of Immunology, 180, 647-654.
https://doi.org/10.4049/jimmunol.180.1.647
[73]  Fosgerau, K., Galle, P., Hansen, T., Albrechtsen, A., Rieper, C. de L., Pedersen, B.K., et al. (2010) Interleukin-6 Autoantibodies Are Involved in the Pathogenesis of a Subset of Type 2 Diabetes. Journal of Endocrinology, 204, 265-273.
https://doi.org/10.1677/JOE-09-0413
[74]  Karner, J., Pihlap, M., Ranki, A., Krohn, K., Trebusak-Podkrajsek, K., Bratanic, N., et al. (2016) IL-6-Specific Autoantibodies among APECED and Thymoma Patients. Immunity, Inflammation and Disease, 4, 235-243. https://doi.org/10.1002/iid3.109
[75]  Hansen, M.B., Svenson, M., Diamant, M. and Bendtzen, K. (1991) Anti-Interleukin-6 Antibodies in Normal Human Serum. Scandinavian Journal of Immunology, 33, 777-781. https://doi.org/10.1111/j.1365-3083.1991.tb02552.x
[76]  Barcenas-Morales, G., Cortes-Acevedo, P. and Doffinger, R. (2019) Anticytokine Autoantibodies Leading to Infection: Early Recognition, Diagnosis and Treatment Options. Current Opinion in Infectious Diseases, 32, 330-336.
https://doi.org/10.1097/QCO.0000000000000561
[77]  Kumar, A., Abdelmalak, B., Inoue, Y. and Culver, D.A. (2018) Pulmonary Alveolar Proteinosis in Adults: Pathophysiology and Clinical Approach. The Lancet Respiratory Medicine, 6, 554-565. https://doi.org/10.1016/S2213-2600(18)30043-2
[78]  Kitamura, N., Ohkouchi, S., Tazawa, R., Ishii, H., Takada, T., Sakagami, T., et al. (2019) Incidence of Autoimmune Pulmonary Alveolar Proteinosis Estimated Using Poisson Distribution. ERJ Open Research, 5, Article ID: 00190-2018.
https://doi.org/10.1183/23120541.00190-2018
[79]  Bonella, F., Bauer, P.C., Griese, M., Ohshimo, S., Guzman, J. and Costabel, U. (2011) Pulmonary Alveolar Proteinosis: New Insights from a Single-Center Cohort of 70 Patients. Respiratory Medicine, 105, 1908-1916.
https://doi.org/10.1016/j.rmed.2011.08.018
[80]  Kiani, A., Parsa, T., Adimi-Naghan, P., Dutau, H., Razavi, F., Farzanegan, B., et al. (2018) An Eleven-Year Retrospective Cross-Sectional Study on Pulmonary Alveolar Proteinosis. Advances in Respiratory Medicine, 86, 7-12.
https://doi.org/10.5603/ARM.2018.0003
[81]  McCarthy, C., Carey, B. and Trapnell, B.C. (2019) Blood Testing for Differential Diagnosis of Pulmonary Alveolar Proteinosis Syndrome. Chest, 155, 450-452.
https://doi.org/10.1016/j.chest.2018.11.002
[82]  Semionov, A. and Kosiuk, J. (2019) Interstitial Lung Disease as a Late Complication of Pulmonary Alveolar Proteinosis. Radiology Case Reports, 14, 572-575.
https://doi.org/10.1016/j.radcr.2019.02.011
[83]  Seymour, J.F. and Presneill, J.J. (2002) Pulmonary Alveolar Pro-teinosis: Progress in the First 44 Years. American Journal of Respiratory and Critical Care Medicine, 166, 215-235. https://doi.org/10.1164/rccm.2109105
[84]  Abdelmalak, B.B., Khanna, A.K., Culver, D.A. and Popovich, M.J. (2015) Therapeutic Whole-Lung Lavage for Pulmonary Alveolar Proteinosis: A Procedural Update. Journal of Bronchology & Interventional Pulmonology, 22, 251-258.
https://doi.org/10.1097/LBR.0000000000000180
[85]  Tazawa, R., Ueda, T., Abe, M., Tatsumi, K., Eda, R., Kondoh, S., et al. (2019) Inhaled GM-CSF for Pulmonary Alveolar Proteinosis. The New England Journal of Medicine, 38, 923-932. https://doi.org/10.1056/NEJMoa1816216
[86]  Sheng, G., Chen, P., Wei, Y., Chu, J., Cao, X. and Zhang, H.L. (2018) Better Approach for Autoimmune Pulmonary Alveolar Proteinosis Treatment: Inhaled or Subcutaneous Granulocyte-Macrophage Colony-Stimulating Factor: A Meta-Analyses. Respiratory Research, 19, 163. https://doi.org/10.1186/s12931-018-0862-4
[87]  Soyez, B., Borie, R., Menard, C., Cadranel, J., Chavez, L., Cottin, V., et al. (2018) Rituximab for Auto-Immune Alveolar Proteinosis, a Real Life Cohort Study. Respiratory Research, 19, 74. https://doi.org/10.1186/s12931-018-0780-5
[88]  Banday, A.Z., Kaur, A., Jindal, A.K., Rawat, A. and Singh, S. (2019) An Update on the Genetics and Pathogenesis of Hereditary Angioedema. Genes & Diseases, S2352304219300455. https://doi.org/10.1016/j.gendis.2019.07.002
[89]  Otani, I.M. and Banerji, A. (2017) Acquired C1 Inhibitor Deficiency. Immunology and Allergy Clinics of North America, 37, 497-511.
https://doi.org/10.1016/j.iac.2017.03.002
[90]  Zanichelli, A., Suffritti, C., Cicardi, M. and Perricone, R. (2014) C1 Inhibitor Autoantibodies. In: Autoantibodies, Elsevier, Amsterdam, 699-705.
https://linkinghub.elsevier.com/retrieve/pii/B9780444563781000824
https://doi.org/10.1016/B978-0-444-56378-1.00082-4
[91]  Mészáros, T., Füst, G., Farkas, H., Jakab, L., Temesszentandrási, G., Nagy, G., et al. (2010) C1-Inhibitor Autoantibodies in SLE. Lupus, 19, 634-638.
https://doi.org/10.1177/0961203309357059
[92]  Bova, M., De Feo, G., Parente, R., De Pasquale, T., Gravante, C., Pucci, S., et al. (2018) Hereditary and Acquired Angioedema: Heterogeneity of Pathogenesis and Clinical Phenotypes. International Archives of Allergy and Immunology, 175, 126-135. https://doi.org/10.1159/000486312
[93]  Craig, T.J., Bernstein, J.A., Farkas, H., Bouillet, L. and Boccon-Gibod, I. (2014) Diagnosis and Treatment of Bradykinin-Mediated Angioedema: Outcomes from an Angioedema Expert Consensus Meeting. International Archives of Allergy and Immunology, 165, 119-127. https://doi.org/10.1159/000368404
[94]  Zanichelli, A., Azin, G.M., Wu, M.A., Suffritti, C., Maggioni, L., Caccia, S., et al. (2017) Diagnosis, Course, and Management of Angioedema in Patients with Acquired C1-Inhibitor Deficiency. The Journal of Allergy and Clinical Immunology: In Practice, 5, 1307-1313. https://doi.org/10.1016/j.jaip.2016.12.032
[95]  Levi, M., Cohn, D., Zeerleder, S., Dziadzio, M. and Longhurst, H. (2019 Long-Term Effects upon Rituximab Treatment of Acquired Angioedema Due to C1-Inhibitor Deficiency. Allergy, 74, 834-840. https://doi.org/10.1111/all.13686
[96]  Dreyfus, D.H., Na, C.R., Randolph, C.C., Kearney, D., Price, C. and Podell, D. (2014) Successful Rituximab B Lymphocyte Depletion Therapy for Angioedema Due to Acquired C1 Inhibitor Protein Deficiency: Association with Reduced C1 Inhibitor Protein Autoantibody Titers. The Israel Medical Association Journal, 16, 315-316.
[97]  Tekin, Z.E., Yener, G.O. and Yüksel, S. (2018) Acquired Angioedema in Juvenile Systemic Lupus Erythematosus: Case-Based Review. Rheumatology International, 38, 1577-1584. https://doi.org/10.1007/s00296-018-4088-z
[98]  Ferreira, V.P., Pangburn, M.K. and Cortés, C. (2010) Complement Control Protein Factor H: The Good, the Bad, and the Inadequate. Molecular Immunology, 47, 2187-2197. https://doi.org/10.1016/j.molimm.2010.05.007
[99]  Sénant, M. and Dragon-Durey, M.A. (2019) Anti-Factor H Autoantibodies Assay by ELISA. In: Autoantibodies, Springer, Berlin, 191-196.
http://link.springer.com/10.1007/978-1-4939-8949-2_15
https://doi.org/10.1007/978-1-4939-8949-2_15
[100]  Franchini, M. (2015) Atypical Hemolytic Uremic Syndrome: From Diagnosis to Treatment. Clinical Chemistry and Laboratory Medicine, 53, 1679-1688.
https://doi.org/10.1515/cclm-2015-0024
[101]  Zhang, K., Lu, Y., Harley, K.T. and Tran, M.H. (2017) Atypical Hemolytic Uremic Syndrome: A Brief Review. Hematology Reports, 9, 62-67.
https://doi.org/10.4081/hr.2017.7053
[102]  Raina, R., Krishnappa, V., Blaha, T., Kann, T., Hein, W., Burke, L., et al. (2019) Atypical Hemolytic-Uremic Syndrome: An Update on Pathophysiology, Diagnosis, and Treatment: Update on Atypical Hemolytic Uremic Syndrome. Therapeutic Apheresis and Dialysis, 23, 4-21. https://doi.org/10.1111/1744-9987.12763
[103]  Vondrák, K. and Seeman, T. (2018) Successful 7-Year Eculizumab Treatment of Plasmapheresis-Resistant Recurrent Atypical Hemolytic-Uremic Syndrome Due to Complement Factor H Hybrid Gene: A Case Report. Transplantation Proceedings, 50, 967-970. https://doi.org/10.1016/j.transproceed.2018.02.012
[104]  Sahutoglu, T., Basturk, T., Sakaci, T., Koc, Y., Ahbap, E., Sevinc, M., et al. (2016) Can Eculizumab Be Discontinued in aHUS? Case Report and Review of the Literature. Medicine, 95, e4330. https://doi.org/10.1097/MD.0000000000004330
[105]  Puraswani, M., Khandelwal, P., Saini, H., Saini, S., Gurjar, B.S., Sinha, A., et al. (2019) Clinical and Immunological Profile of Anti-Factor H Antibody Associated Atypical Hemolytic Uremic Syndrome: A Nationwide Database. Frontiers in Immunology, 10, 1282. https://doi.org/10.3389/fimmu.2019.01282
[106]  Deville, C., Garrouste, C., Coppo, P., Evrard, B., Lautrette, A. and Heng, A.E. (2016) Efficacy of Rituximab and Plasmapharesis in an Adult Patient with Antifactor H Autoantibody-Associated Hemolytic Uremic Syndrome: A Case Report and Literature Review. Medicine, 95, e5007. https://doi.org/10.1097/MD.0000000000005007
[107]  Zaman, M., Huissoon, A., Buckland, M., Patel, S., Alachkar, H., Edgar, J.D., et al. (2019) Clinical and Laboratory Features of Seventy-Eight UK Patients with Good’s Syndrome (Thymoma and Hypogammaglobulinaemia): Good’s Syndrome in the UK. Clinical & Experimental Immunology, 195, 132-138.
https://doi.org/10.1111/cei.13216
[108]  Burbelo, P.D., Browne, S.K., Sampaio, E.P., Giaccone, G., Zaman, R., Kris-tosturyan, E., et al. (2010) Anti-Cytokine Autoantibodies Are Associated with Opportunistic Infection in Patients with Thymicneoplasia. Blood, 116, 4848-4858.
https://doi.org/10.1182/blood-2010-05-286161
[109]  Tamburello, A., Castelnovo, L., Faggioli, P., Bompane, D., Brando, B., Gatti, A., et al. (2019) Good’s Syndrome, a Rare Form of Acquired Immunodeficiency Associated with Thymomas. Clinical Practice, 9, 51-54.
https://doi.org/10.4081/cp.2019.1112
[110]  Herrera-Sánchez, D.A., León-Pedroza, J.I., Vargas-Camano, M.E. and Castrejón- Vázquez, M.I. (2017) Good’s Syndrome. Report of Case. Revista Alergia Mexico, 64, 235-240. https://doi.org/10.29262/ram.v64i2.194
[111]  Kawamura, T., Naito, T., Kobayashi, H., Nakashima, K., Omori, S., Wakuda, K., et al. (2019) Acquired Immunodeficiency Associated with Thymoma: A Case Report. BMC Cancer, 19, 762. https://doi.org/10.1186/s12885-019-5980-y
[112]  Multani, A., Gomez, C.A. and Montoya, J.G. (2018) Prevention of Infectious Diseases in Patients with Good Syndrome. Current Opinion in Infectious Diseases, 31, 267-277. https://doi.org/10.1097/QCO.0000000000000473
[113]  Sveinsson, O., Piehl, F., Aspegren, O. and Hietala, M.A. (2019) Successful Combined Treatment with Thymectomy, Rituximab and Tocilizumab for Severe Thymoma-Associated Multi Autoimmune Syndrome. Journal of Neuroimmunology, 336, Article ID: 577028. https://doi.org/10.1016/j.jneuroim.2019.577028

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413