全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Deep into the Water: Exploring the Hydro-Electromagnetic and Quantum-Electrodynamic Properties of Interfacial Water in Living Systems

DOI: 10.4236/oalib.1105435, PP. 1-50

Subject Areas: Chemical Engineering & Technology

Keywords: Interfacial Water, Hydrophilic vs Hydrophobic Surface, Coherence Domain, Exclusion Zone, Proton Transfer, Proton Motive Force, Grotthuss Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract

Normal water structures are maintained largely by interactions with bi-omacromolecular surfaces and weak electromagnetic fields, which enable extended networks for electron and proton conductivity. All standard chemistry is totally reliant on electrostatics and avoids all mention of elec-trodynamics and the consequent radiation field, which is supporting the notion of water as a primary mediator of biological effects induced via electromagnetic means into living systems. Quantum Electrodynamic (QED) field theory have produced a vision of water in a liquid state as a medium, which for a peculiarity of its molecular electronic spectrum reveals itself as an essential tool for long-range communications, being able to change its supra-molecular organization in function of the interaction with the environment. This paper draws attention to the fact that interfacial water (nanoscale confined water) has been shown, independently by Emilio Del Giudice et al. and by Gerald Pollack et al., to contain respectively Coherence Domains (CDs) and Exclusion Zones (EZs), which may be regarded as long-range ensembles of CDs, dynamic aqueous structures, which uses the special properties of water, such as its electron/proton dynamics and organized response to electromagnetic fields, to receive electromagnetically encoded signals endowed with coherence (negentropy) at a low frequency, and sum the resultant excitations, so as to foster the redistribution of that coherence at frequencies which may affect biological systems. The phase transition of water from the ordinary coherence of its liquid state (bulk water) to the semi-crystalline or glassy and super-coherent state of interfacial water and its role in living organisms is discussed. The link between interfacial and intracellular water of the living and 1) the thermodynamic correlation between electron and proton transfer responsible for the redox potential of chemical species, 2) the Grotthuss mechanism and the H eightfold path, 3) superconductivity and superfluidity (dissipationless quantum states), 4) the proton motive force and protons role in biological liquid-flow systems, and 5) two possible explanations to as many non-ordinary phenomena, one related to the mind-body severely stressful condition due to a Near Death State (NDS) or to a Near Death Like State (NDLS), namely the Electromagnetic Hyper Sensitivity (EHS) or Electromagnetic After-Effect (EAE), the other related to the harmful consequences avoided during the so-called fire walking (ceremony), are discussed.

Cite this paper

Messori, C. (2019). Deep into the Water: Exploring the Hydro-Electromagnetic and Quantum-Electrodynamic Properties of Interfacial Water in Living Systems. Open Access Library Journal, 6, e5435. doi: http://dx.doi.org/10.4236/oalib.1105435.

References

[1]  Davidson, R.M., Lauritzen, A. and Seneff, S. (2013) Biological Water Dynamics and Entropy: A Biophysical Origin of Cancer and Other Diseases. Entropy, 15, 3822-3876.
https://people.csail.mit.edu/seneff/En
tropy/entropy-15-03822.pdf
https://doi.org/10.3390/e15093822
[2]  Preparata, G., et al. (1999) The Role of QED (Quantum Electro Dynamics) in Medicine. Rivista di Biologia/Biology Forum 93/ 2000, 1-27.
http://www.22passi.it/downloads/bioriso
nanza/qeddefinitivo.pdf
[3]  Pérez, C., et al. (2012) Structures of Cage, Prism, and Book Isomers of Water Hexamer from Broadband Rotational Spectroscopy. Science, 336, 897-901.
https://www.researchgate.net/publication/22
4979747_Structures_of_Cage_Prism_and_Book_I
somers_of_Water_Hexamer_from_Broadband_
Rotational_Spectroscopy
https://doi.org/10.1126/science.1220574
[4]  Ho, M.W. (2014) Large Supramolecular Water Clusters Caught on Camera—A Review. Water Journal, 6, 1-12. https://www.waterjournal.org/volume-6/ho
[5]  Jerman, I. and Ratajc, P. (2014) A Further Indication of Self-Ordering Capacity of Water via the Droplet Evaporation Method. Entropy, 16, 5211-5222.
https://www.mdpi.com/1099-4300/16/10/5211
https://doi.org/10.3390/e16105211
[6]  Elia, V., et al. (2013) Experimental Evidence of Stable Aggregates of Water at Room Temperature and Normal Pressure after Iterative Contact with a Nafion? Polymer Membrane. Water Journal, 5, 16-26.
http://www.waterjournal.org/volume-5/de-ninno
[7]  Bischof, M. and Del Giudice, E. (2013) Communication and the Emergence of Collective Behavior in Living Organisms: A Quantum Approach. Molecular Biology International, 2013, Article ID: 987549. https://doi.org/10.1155/2013/987549
http://www.oalib.com/paper/3079684
#.XJyuG7ieErs
[8]  Tigrek, S. and Barnes, F. (2010) Water Structures and Effects of Electric and Magnetic Fields. In: Giuliani, L. and Soffritti, M., Eds., Non-Thermal Effects and Mechanisms of Interaction between Electromagnetic Fields and Matter, European Journal of Oncology, 25-50.
http://www.teslabel.be/PDF/ICEMS_Monograph_2010.pdf
[9]  Carignano, M.A., Karlstr?m, G. and Linse, P. (1997) Polarizable Ions in Polarizable Water: A Moleclar Dynamics Study. Journal of Physical Chemistry B, 101, 1142-1147.
[10]  Enami, S. and Colussi, A.J. (2013) Long-Range Specific Ion-Ion Interactions in Hydrogen-Bonded Liquid Films. The Journal of Chemical Physics, 138, Article ID: 184706. https://doi.org/10.1063/1.4803652
https://pdfs.semanticscholar.org/1917/fadacf
2b318da1d31b95c489483dd33ab30d.pdf
[11]  Rahman, N.A., Ibrahim, F. and Yafouz, B. (2017) Dielectrophoresis for Biomedical Sciences Applications: A Review. Sensors, 17, 449.
https://www.ncbi.nlm.nih.gov/pmc/articl
es/PMC5375735/
https://doi.org/10.3390/s17030449
[12]  Pethig, R., Menachery, A., Pells, S. and De Sousa, P. (2010) Dielectrophoresis: A Review of Applications for Stem Cell Research. Journal of Biomedicine and Biotechnology, 2010, Article ID: 182581.
https://doi.org/10.1155/2010/182581
https://www.researchgate.net/publication/4
4618612_Dielectrophoresis_A_Review_of_Applications_for_Stem_Cell_Research
[13]  Dukhin, A.S., Ulberg, Z.R., Gruzina, T.G. and Karamushka, V.I. (2014) Peculiarities of Live Cells’ Interaction with Micro- and Nanoparticles. In: Ohshima, H. and Makino, K., Eds., Colloid and Interface Science in Pharmaceutical Research and Development, Elsevier, Amsterdam, 193-222.
https://doi.org/10.1016/B978-0-444-62614-1.00010-7
[14]  Du, E., Qiang, Y. and Liu, J. (2018) Erythrocyte Membrane Failure by Electromechanical Stress. Applied Sciences, 8, 174.
https://doi.org/10.3390/app8020174
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909407/
[15]  Ho, M.W. (2014) Illuminating Water and Life. Entropy, 16, 4874-4891.
https://www.mdpi.com/1099-4300/16/9/4874/pdf
https://doi.org/10.3390/e16094874
[16]  Reiter, G.F., et al. (2012) Evidence for an Anomalous Quantum State of Protons in Nanoconfined Water. Physical Review, 85, Article ID: 045403.
https://arxiv.org/abs/1101.4994
https://doi.org/10.1103/PhysRevB.85.045403
[17]  Gilli, G. and Gilli, P. (2012) Six Lectures on the Nature of the Hydrogen Bond, Lecture 1, Introduction to the Hydrogen Bond: Basic Concepts and Summary of Our First Studies from 1989 to 2002.
http://www.ggilli.com/files/2012_1_INTRODUCTION.pdf
[18]  Gilli, P. and Gilli, G. (2010) Hydrogen Bond Models and Theories: The Dual Hydrogen Bond Model and Its Consequences. Journal of Molecular Structure, 972, 2-10. https://doi.org/10.1016/j.molstruc.2010.01.073
[19]  Gilli, G. and Gilli, P. (2009) The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. Oxfrord University Press, Oxfrord.
https://doi.org/10.1093/acprof:oso/9780199558964.001.0001
[20]  Ceriotti, M., Cuny, J., Parrinello, M. and Manolopoulos, D.E. (2013) Nuclear Quantum Effects and Hydrogen Bond Fluctuations in Water. Proceedings of the National Academy of Sciences of the United States of America, 110, 15591-15596.
https://www.pnas.org/content/110/39/15591
https://doi.org/10.1073/pnas.1308560110
[21]  Hutter, J. (2012) Car-Parrinello Molecular Dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2, 604-612.
https://doi.org/10.1002/wcms.90
[22]  Lock, A., Woutersen, S. and Bakker, H.J. (2001) Ultrafast Energy Equilibration in Hydrogen-Bonded Liquids. The Journal of Physical Chemistry A, 105, 1238-1243.
https://doi.org/10.1021/jp003158e
[23]  Woutersen, S., Emmerichs, U., Nienhuys, H.-K. and Bakker, H.J. (1998) Anomalous Temperature Dependence of Vibrational Lifetimes in Water and Ice. Physical Review Letters, 81, 1106-1109. https://doi.org/10.1103/PhysRevLett.81.1106
http://hankwang.lagom.nl/publications/woute
rsen-prl-81-1106-1998.pdf
[24]  Deàk, J., Rhea, S.T., Iwaki, L.K. and Dlott, D.D. (2000) Vibrational Energy Relaxation and Spectral Diffusion in Water and Deuterated Water. The Journal of Physical Chemistry A, 104, 4866-4875.
[25]  Tuladhar, A., Dewan, S., Kubicki, J.D. and Borguet, E. (2016) Spectroscopy and Ultrafast Vibrational Dynamics of Strongly Hydrogen Bonded OH Species at the Interface. The Journal of Physical Chemistry C, 120, 16153-16161.
http://www.temple.edu/borguet/publication/
Documents/pdf_files/2016-2-si.pdf
[26]  Woutersen, S., Emmerichs, U. and Bakker, H.J. (1997) Femtosecond Mid-IR Pump-Probe Spectroscopy of Liquid Water: Evidence for a Two-Component Structure. Science, 278, 658-660.
https://doi.org/10.1126/science.278.5338.658
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.894.3843&rep=rep1&type=pdf
[27]  Laenen, R., Rauscher, C. and Laubereau, A. (1998) Dynamics of Local Substructures in Water Observed by Ultrafast Infrared Hole Burning. Physical Review Letters, 80, 2622-2625.
https://doi.org/10.1103/PhysRevLett.80.2622
[28]  Woutersen, S. and Bakker, H.J. (1999) Hydrogen Bond in Liquid Water as a Brownian Oscillator. Physical Review Letters, 83, 2077-2080.
https://www.researchgate.net/profile/Sander
_Woutersen/publication/243475463_Hydroge
n_Bond_in_Liquid_Water_as_a_Brownian_Oscilla
tor/links/54ee22b10cf25238f939b514.pdf
https://doi.org/10.1103/PhysRevLett.83.2077
[29]  Sendner, C., Horinek, D., Bocquet, L. and Netz, R.R. (2009) Interfacial Water at Hydrophobic and Hydrophilic Surfaces: Slip, Viscosity, and Diffusion. Langmuir, 25, 10768-10781. https://doi.org/10.1021/la901314b
https://www.academia.edu/16943925/Interf
acial_Water_at_Hydrophobic_and_Hydrophilic
_Surfaces_Slip_Viscosity_and_Diffusion
[30]  Patel, A.J., et al. (2012) Sitting at the Edge: How Biomolecules Use Hydrophobicity to Tune Their Interactions and Function. The Journal of Physical Chemistry B, 116, 2498-2503.
https://www.ncbi.nlm.nih.gov/pmc/a
rticles/PMC3303187/
https://doi.org/10.1021/jp2107523
[31]  Messori, C. (2019) The Super-Coherent State of Biological Water. Open Access Library Journal, 6, 1-5.
https://www.scirp.org/journal/PaperInf
ormation.aspx?PaperID=90862
[32]  Davidson, R.M. and Seneff, S. (2012) The Initial Common Pathway of Inflammation, Disease, and Sudden Death. Entropy, 14, 1399-1442.
https://doi.org/10.3390/e14081399
https://dspace.mit.edu/openaccess-di
sseminate/1721.1/76366
[33]  Preoteasa, E.A. and Apostol, M.V. (2008) Collective Dynamics of Water in the Living Cell and in Bulk Liquid. New Physical Models and Biological Inferences, International Fr?hlich Symposium Biophysical Aspects of Cancer Electromagnetic Mechanisms, Prague, Czech Republic.
https://arxiv.org/ftp/arxiv/papers/08
12/0812.0275.pdf
[34]  Sigel, R. (2017) Concepts for Soft Interfaces. Soft Matter, 13, 1940-1942.
https://pubs.rsc.org/en/content/articlep
df/2017/sm/c6sm02413k
https://doi.org/10.1039/C6SM02413K
[35]  Pokorny, J., et al. (2015) Mitochondrial Dysfunction and Disturbed Coherence: Gate to Cancer. Pharmaceuticals, 8, 675-695. https://doi.org/10.3390/ph8040675
https://www.ncbi.nlm.nih.gov/pmc/ar
ticles/PMC4695805/
[36]  Pokorny, J., Pokorny, J. and Borodavka, F. (2017) Warburg Effect-Damping of Electromagnetic Oscillations. Electromagnetic Biology and Medicine, 36, 270-278.
https://emmind.net/openpapers_repos/Endog
enous_Fields-Mind/General/EM_Cancer/2017_
Warburg_effect_damping_of_electromagnetic_os
cillations.pdf
https://doi.org/10.1080/15368378.2017.1326933
[37]  Pokorny, J. (2014) Cancer—Pathological Breakdown of Coherent Energy States. Biophysical Reviews and Letters, 9, 115-133.
https://www.researchgate.net/profile/Jan_Vrba
/publication/263805231_CANCER-PAthological_
breakdown_of_coherent_energy_states/links/57207e63
08aed056fa236c4d.pdf?disableCoverPage=true
https://doi.org/10.1142/s1793048013300077
[38]  Antonenko, Y.N., Pohl, P. and Rosenfeld, E. (1996) Visualization of the reaction layer in the Immediate Membrane Vicinity. Archives of Biochemistry and Biophysics, 333, 225-232.
https://doi.org/10.1006/abbi.1996.0385
[39]  Del Giudice, E. and Vitiello, G. (2011) Influence of Gravity on the Collective Molecular Dynamics of Liquid Water: The Case of the Floating Water Bridge. Water Journal, 2, 133-141.
http://waterjournal.org/uploads/vol2/delgiudice
/WATER.2011.1.Vitiello.pdf
[40]  Del Giudice, E., Stefanini, P., Tedeschi, A. and Vitiello, G. (2011) The Interplay of Biomolecules and Water at the Origin of the Active Behavior of Living Organisms. Journal of Physics: Conference Series, 329, Article ID: 012001.
https://iopscience.iop.org/article/10.1088/
1742-6596/329/1/012001/pdf
https://doi.org/10.1088/1742-6596/329
/1/012001
[41]  Del Giudice, E., Pulselli, R.M. and Tiezzi, E. (2009) Thermodynamics of Irreversible Processes and Quantum Field Theory: An Interplay for the Understanding of Ecosystem Dynamics. Ecological Modelling, 220, 1874-1879.
http://www.irafs.org/courses/materials
/delgiudice_thermodynamics.pdf
https://doi.org/10.1016/j.ecolmodel.20
09.04.035
[42]  Brizhik, L., Del Giudice, E., J?rgensen, S.E., Marchettini, N. and Tiezzi, E. (2009) The Role of Electromagnetic Potentials in the Evolutionary Dynamics of Ecosystems. Ecological Modelling, 220, 1865-1869.
https://www.researchgate.net/publication
/222525342_The_role_of_electromagnetic_
potentials_in_the_evolutionary_dynamics_of_
ecosystems
https://doi.org/10.1016/j.ecolmodel.2009.
04.017
[43]  Brizhik, L., Del Giudice, E., Tedeschi, A. and Voeikov, V.L. (2011) The Role of Water in the Information Exchange between the Components of an Ecosystem. Ecological Modelling, 222, 2869-2877.
https://doi.org/10.1016/j.ecolmodel.201
1.05.017
https://www.researchgate.net/publication/
229327908_The_role_of_water_in_the_infor
mation_exchange_between_the_component
s_of_an_ecosystem
[44]  Brizhik, L., Chiappini, E., Stefanini, P. and Vitiello, G. (2018) Modeling Meridians within the Quantum Field Theory. Journal of Acupuncture and Meridian Studies, 12, 29-36.
https://www.jams-kpi.com/article/S2005-2
901(18)30076-1/pdf
[45]  Messori, C. (2016) From Continuity to Contiguity: On the Genesis of Consciousness, Culture and Oral Language (Part IV of IV). Journal of Consciousness Exploration & Research, 7, 214-228.
https://www.researchgate.net/publication/298
791037_From_Continuity_to_Contiguity_On_the_
genesis_of_consciousness_culture_and_oral_langu
age_Part_IV_of_IV
[46]  Murugan, N.J., Karbowski, L.M. and Persinger, M.A. (2014) Serial pH Increments (~20 to 40 Milliseconds) in Water during Exposures to Weak, Physiologically Patterned Magnetic Fields: Implications for Consciousness. Water Journal, 6, 45-60.
http://www.waterjournal.org/volume-6/persinger-summary-2
[47]  Fumagalli, L., et al. (2018) Anomalously Low Dielectric Constant of Confined Water. Science, 360, 1339-1342. https://arxiv.org/ftp/arxiv/papers/1806/1806.04486.pdf
https://doi.org/10.1126/science.aat4191
[48]  Voeikov, V.L. and Del Giudice, E. (2009) Water Respiration—The Basis of the Living State. Water Journal, 1, 52-75.
https://www.waterjournal.org/uploads/vol1/
voeikov/WATER-Vol1-Voeikov.pdf
[49]  Tedeschi, A. (2010) Is the Living Dynamics Able to Change the Properties of Water? International Journal of Design & Nature Ecodynamics, 5, 60-67.
https://www.witpress.com/Secure/ejournals//
papers/D&NE050108f.pdf
https://doi.org/10.2495/DNE-V5-N1-60-67
[50]  Montagnier, L., et al. (2015) Transduction of DNA Information through Water and Electromagnetic Waves. Electromagnetic Biology and Medicine, 34, 106-112.
https://arxiv.org/abs/1501.01620
https://doi.org/10.3109/15368378.2015.1036072
[51]  Wernet, P.H., Nordlund, D., Bergmann, U. and Cavalleri, M. (2004) The Structure of the First Coordination Shell in Liquid Water. Science, 304, 995-998.
https://doi.org/10.1126/science.1096205
https://www.researchgate.net/publication/86
41681_The_Structure_of_the_First_Coordinati
on_Shell_in_Liquid_Water
[52]  Voeikov, V.L., et al. (2012) The Stable Nonequilibrium State of Bicarbonate Aqueous Systems. Russian Journal of Physical Chemistry A, 86, 1407-1415.
https://www.researchgate.net/publication/25
7845152_The_stable_nonequilibrium_state_of_b
icarbonate_aqueous_systems
https://doi.org/10.1134/S003602441209018X
[53]  Bernadi, L., Valle, F., Coco, M., Calciati, A. and Sleight, P. (1996) Physical Activity Influences Heart Rate Variability and Very-Low-Frequency Components in Holter Electrocardiograms. Cardiovascular Research, 32, 234-237.
https://doi.org/10.1016/0008-6363(96)00081-8
[54]  McCraty, R., Deyhle, A. and Childre, D. (2012) The Global Coherence Initiative: Creating a Coherent Planetary Standing Wave. Global Advances in Health and Medicine, 1, 64-76.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833489/
https://doi.org/10.7453/gahmj.2012.1.1.013
[55]  Kleimenova, N.G., Kozyreva, O.V., Breus, T.K. and Rapoport, S.I. (2007) Pc1 Geomagnetic Pulsations as a Potential Hazard of the Myocardial Infarction. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 1759-1764.
https://doi.org/10.1016/j.jastp.2006.10.018
https://www.researchgate.net/publication/22
3464840_Pc1_geomagnetic_pulsations_as_a_pot
ential_hazard_of_the_myocardial_infarction
[56]  Samsonov, S.N., Kleimenova, N.G., Kozyreva, O.V. and Petrova, P.G. (2014) The Effect of Space Weather on Human Heart Diseases in Subauroral Latitudes. Izvestiya Atmospheric and Oceanic Physics, 59, 719-727.
https://doi.org/10.1134/S0001433814040057
https://www.researchgate.net/publication/284
401991_The_effect_of_space_weather_on_huma
n_heart_diseases_in_subauroral_latitudes
[57]  Meyl, K. (2012) About Vortex Physics and Vortex Losses. Journal of Vortex Science and Technology, 1, Article ID: 235563. https://doi.org/10.4303/jvst/235563
http://omicsonline.com/open-access/about-
vortex-physics-and-vortex-losses-2090-8369
.1000101.pdf?aid=15110
[58]  Del Giudice, E. and Tedeschi, A. (2009) Water and the Autocatalysis in Living Matter. Electromagnetic Biology and Medicine, 28, 46-54.
http://www.ncbi.nlm.nih.gov/pubmed/19337894
https://doi.org/10.1080/15368370802708728
[59]  Szent-Gyorgyi, A. (1957) Bioenergetics. Academic Press, New York.
[60]  Del Giudice, E., Voeikov, V., Tedeschi, A. and Vitiello, G. (2015) The Origin and Special Role of Coherent Water in Living Systems. In: Fels, D., Cifra, M. and Scholkmann, F., Eds., Fields of the Cell, Research Signpost, Trivandrum, 95-111.
https://emmind.net/openpapers_repos/End
ogenous_Fields-Mind/Water_EMF/Exclusion_Z
ones/2014_The_origin_and_the_special_role_of_
coherent_water_in_living_systems.pdf
[61]  Meyl, K. (2012) DNA and Cell Resonance: Magnetic Waves Enable Cell Communication. DNA and Cell Biology, 31, 422-426.
https://doi.org/10.1089/dna.2011.1415
http://www.k-meyl.de/go/Primaerliteratur/
Magnetic_Waves-Enable-Cell_Communication.pdf
[62]  Pollack, G.H. (2013) The Fourth Phase of Water: Beyond Solid, Liquid, and Vapor. Edgescience, No. 16, 14-18.
https://ecee.colorado.edu/~ecen5555/Sou
rceMaterial/Pollack13.pdf
[63]  Pollack, G.H., Figueroa, X. and Zhao, Q. (2009) Molecules, Water, and Radiant Energy: New Clues for the Origin of Life. International Journal of Molecular Sciences, 10, 1419-1429.
https://doi.org/10.3390/ijms10041419
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680624/
[64]  Hwang, S.G., Hong, J.K., Sharma, A., Pollack, G.H. and Bahng, G.W. (2018) Exclusion Zone and Heterogeneous Water Structure at Ambient Temperature. PLoS ONE, 13, e0195057.
https://doi.org/10.1371/journal.pone.0195057
https://journals.plos.org/plosone/article?id=1
0.1371/journal.pone.0195057
[65]  Del Giudice, E., Tedeschi, A., Vitiello, G. and Voeikov, V. (2013) Coherent Structures in Liquid Water Close to Hydrophilic Surfaces. Journal of Physics: Conference Series, 442, Article ID: 012028. https://doi.org/10.1088/1742-6596/442/1/012028
https://iopscience.iop.org/article/10.1088/174
2-6596/442/1/012028/pdf
[66]  Zheng, J.M. and Pollack, G.H. (2003) Long-Range Forces Extending from Polimer-Gel Surfaces. Physical Review E: Statistical Nonlinear and Soft Matter Physics, 68, 031408-031414.
https://doi.org/10.1103/PhysRevE.68.031408
https://arxiv.org/ftp/cond-mat/papers/0305/0305093.pdf
[67]  Zheng, J.M., Chin, W.-C., Khijniak, E., Khijniak Jr., E. and Pollack, G.H. (2006) Surfaces and Interfacial Water: Evidence that Hydrophilic Surfaces Have Long-Range Impact. Advances in Colloid and Interface Science, 127, 19-27.
https://doi.org/10.1016/j.cis.2006.07.002
http://courses.washington.edu/bioe555/Zheng.pdf
[68]  Chai, B., et al. (2008) Spectroscopic Studies of Solutes in Aqueous Solution. The Journal of Physical Chemistry A, 112, 2242-2247.
[69]  Buch, V., Tarbuck, T., Groenzin, H., Li, I., Shultz, M.J. and Richmond, G.L. (2007) Sum Frequency Generation Surface Spectra of Ice, Water, and Acid Solution Investigated by an Exciton Model. The Journal of Chemical Physics, 127, Article ID: 204710.
https://doi.org/10.1063/1.2790437
https://pages.uoregon.edu/grgroup/Publicatio
ns/157%20Buch.pdf
[70]  Del Giudice, E., Spinetti, P.R. and Tedeschi, A. (2010) Water Dynamics at the Root of Metamorphosis in Living Organisms. Water Journal, 2, 566-586.
https://doi.org/10.3390/w2030566
https://pdfs.semanticscholar.org/4bc0/3fdbd997
80f6713d375a74bd9200d525b2a7.pdf
[71]  Palti, Y., de Nour, E. and Abrahamov, A. (1966) The Effect of Atmospheric Ions on the Respiratory System of Infants. Pediatrics, 38, 405-411.
[72]  Kotaka, S. and Krueger, A.P. (1978) Effects of Air Ions on Microorganisms and Other Biological Materials. Critical Reviews in Microbiology, 6, 109-150.
https://doi.org/10.3109/10408417809090621
[73]  Charry, J.M. and Hawkinshire, F.B. (1981) Effects of Atmospheric Electricity on Some Substrates of Disordered Social Behavior. Journal of Personality and Social Psychology, 41, 185-197. https://doi.org/10.1037//0022-3514.41.1.185
[74]  Bachman, C.H., McDonald, R.D. and Lorenz, P.J. (1965) Some Physiological Effects of Measured Air Ions. International Journal of Biometeorology, 9, 127-139.
https://doi.org/10.1007/BF02188468
[75]  Sovij?rvi, A.R.A., et al. (1979) Effect of Air Ionization on Heart Rate and Perceived Exertion during a Bicycle Exercise Test. European Journal of Applied Physiology and Occupational Physiology, 41, 285-291. https://doi.org/10.1007/BF00429745
[76]  Charry, J.M. (1984) Biological Effects of Small Air Ions: A Review of Findings and Methods. Environmental Research, 34, 351-389.
https://doi.org/10.1016/0013-9351(84)90104-X
[77]  Luts, A., et al. (2009) Some Air Electricity Phenomena Caused by Waterfalls: Correlative Study of the Spectra. Atmospheric Research, 91, 229-237.
https://doi.org/10.1016/j.atmosres.2008.02.019
[78]  Kurt Kung, C.-C. and Pollack, G.H. (2014) Effect of Atmospheric Ions on Interfacial Water. Entropy, 16, 6033-6041. https://doi.org/10.3390/e16116033
https://www.mdpi.com/1099-4300/16/11/6033
[79]  Jennie, P., Mather, J.P. and Roberts, P.E. (1998) Introduction to Cell and Tissue Culture Theory and Technique. Plenum Press, New York.
https://www.bjcancer.org/Sites_OldFiles/_Libr
ary/UserFiles/pdf/Introduction%20to%20Cel
l%20and%20Tissue%20Culture.pdf
[80]  Ullmann, G.M. and Bombarda, E. (2013) pKa Values and Redox Potentials of Proteins. What Do They Mean? Biological Chemistry, 394, 611-619.
http://www.bisb.uni-bayreuth.de/PDF/Ullm
ann2013.BiolChem.pdf
https://doi.org/10.1515/hsz-2012-0329
[81]  Darcy, J.W., Koronkiewicz, B., Parada, G.A. and Mayer, J.M. (2018) A Continuum of Proton-Coupled Electron Transfer Reactivity. Accounts of Chemical Research, 51, 2391-2399.
https://doi.org/10.1021/acs.accounts.8b00319
http://gaznevada.iq.usp.br/wp-content/uplo
ads/2018/10/mayer-18_PCET_continuum.pdf
[82]  Weinberg, D.R., et al. (2007) Proton-Coupled Electron Transfer. Chemical Reviews, 107, 5004-5064. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449329/
https://doi.org/10.1021/cr0500030
[83]  Sbitnev, V.I. (2016) Quantum Consciousness in Warm, Wet, and Noisy Brain. Modern Physics Letters B, 30, Article ID: 1650329. https://arxiv.org/abs/1606.00258
https://doi.org/10.1142/S0217984916503292
[84]  Silvi, B. and Ratajczak, H. (2016) Hydrogen Bonding and Delocalization in the ELF Analysis Approach. Physical Chemistry Chemical Physics, 18, 27442-27449.
https://doi.org/10.1039/C6CP05400E
https://hal.sorbonne-universite.fr/
hal-01383126/document
[85]  Decoursey, T.E. (2003) Voltage-Gated Proton Channels and Other Proton Transfer Pathways. Physiological Reviews, 83, 475-579.
https://www.physiology.org/doi/full/10.1
152/physrev.00028.2002?url_ver=Z39.88-
2003&rfr_id=ori:rid:crossref.org&rfr_dat=c
r_pub%3dpubmed
[86]  Pomès, R. and Roux, B. (1998) Free Energy Profiles for H Conduction along Hydrogen-Bonded Chains of Water Molecules. Biophysic Journal, 75, 33-40.
https://doi.org/10.1016/S0006-3495(98)77492-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299677/
[87]  Hassanali, A., Giberti, F., Cuny, J., Kühne, T.D. and Parrinello, M. (2013) Proton Transfer Through the Water Grossamer. Proceedings of the National Academy of Sciences of the United States of America, 110, 13723-13728.
https://doi.org/10.1073/pnas.1306642110
[88]  Peng, Y., Swanson, J.M.J., Kang, S., Zhou, R. and Voth, G.A. (2015) Hydrated Excess Protons Can Create their Own Water Wires. Journal of Physical Chemistry B, 119, 9212-9218. https://pubs.acs.org/doi/10.1021/jp5095118
[89]  Mollenhauer, H.H. and Morré, D.J. (1978) Structural Compartmentation of the Cytosol: Zones of Exclusion, Zones of Adhesion, Cytoskeletal and Intercisternal Elements. In: Roodyn, D.B., Ed., Subcellular Biochemistry, Springer, Boston, MA, 327-362. https://doi.org/10.1007/978-1-4615-7942-7_7
[90]  Miller Jr., J.H., Rajapakshe, K.I., Infante, H.L. and Claycomb, J.R. (2013) Electric Field Driven Torque in ATP Synthase. PLoS One, 8 e74978.
https://doi.org/10.1371/journal.pone.0
074978
https://journals.plos.org/plosone/article?id
=10.1371/journal.pone.0074978
[91]  Messori, C. (2012) A Cosmogonic Model of Human Consciousness. Journal of Consciousness Exploration & Research, 3, 1149-1208.
https://www.researchgate.net/publication/25
5696726_A_Cosmogonic_Model_of_Human_Con
sciousness
[92]  Fedi, M. (2017) Hydrodynamics of the Dark Superfluid: I. Genesis of Fundamental Particles. Hal-01549082. https://hal.archives-ouvertes.fr/hal-01549082v2/document
[93]  Fedi, M. (2016) Quantum Gravity without Gravitons in a Superfluid Quantum Space. Hal-01362019. https://hal.archives-ouvertes.fr/hal-01362019/document
[94]  Fedi, M. (2017) A Superfluid Theory of Everything? Hal-01312579v4.
https://hal.archives-ouvertes.fr/hal-01312579v4/document
[95]  Dellago, C., Naor, M.M. and Hummer, G. (2003) Proton Transport through Water-Filled Carbon Nanotubes. Physical Review Letters, 90, Article ID: 105902.
https://doi.org/10.1103/PhysRevLett.90.105902
https://homepage.univie.ac.at/Christoph.
Dellago/papers/PRL_90_105902_2003.pdf
[96]  Chen, J., Li, X.-Z., Zhang, Q., Michaelides, A. and Wang, E. (2013) Nature of Proton Transport in a Water-Filled Carbon Nanotube and in Liquid Water. Physical Chemistry Chemical Physics, 15, 6344-6349. https://doi.org/10.1039/c3cp50218j
https://arxiv.org/abs/1404.7280
[97]  Zhu, F. and Schulten, K. (2003) Water and Proton Conduction through Carbon Nanotubes as Models for Biological Channels. Biophysical Journal, 85, 236-244.
https://doi.org/10.1016/S0006-3495(03)74469-5
https://www.sciencedirect.com/science/
article/pii/S0006349503744695
[98]  Little, W.A. (1964) Possibility of Synthesizing an Organic Superconductor. Physical Review, 134, A1416-A1424. https://doi.org/10.1103/PhysRev.134.A1416
http://ivanik3.narod.ru/SuperCondactivyty/
Hot/PhysRev.134.A1416Littei.pdf
[99]  Fainchtein, R. (1992) Scanning Tunneling Microscopy of Organic Conductors and Superconductors. Johns Hopkins APL Technical Digest, 13, 332-341.
https://www.jhuapl.edu/techdigest/views/p
dfs/V13_N2_1992/V13_N2_1992_Fainchtein.pdf
[100]  Del Giudice, E. and Giuliani, L. (2010) Coherence in Water and the kT Problem in Living Matter. In: Giuliani, L. and Soffritti, M., Eds., Non-Thermal Effects and Mechanisms of Interaction between Electromagnetic Fields and Matter, European Journal of Oncology, 5(Monograph), 7-23.
http://www.teslabel.be/PDF/ICEMS_Monograph_2010.pdf
[101]  Kresin, V.Z. (2018) Paths to Room-Temperature Superconductivity. Journal of Superconductivity and Novel Magnetism, 31, 611-617.
https://doi.org/10.1007/s10948-017-4382-0
[102]  Sahu, S., Ghosh, S., Hirata, K., Fujita, D. and Bandyopadhyay, A. (2013) Multi-Level Memory-Switching Properties of a Single Brain Microtubule. Applied Physics Letters, 102, Article ID: 123701. https://doi.org/10.1063/1.4793995
https://www.researchgate.net/profile/Anirban_
Bandyopadhyay/publication/257953778_Mult
i-level_mem
ory-switching_properties_of_a_single_brain_mi
crotubule/links/02e7e526f888007a08000000/Mu
lti-level-memory-switching-properties-of-a-si
ngle-brain-microtubule.pdf
[103]  Sahu, S., et al. (2013) Atomic Water Channel Controlling Remarkable Properties of a Single Brain Microtubule: Correlating Single Protein to Its Supramolecular Assembly. Biosensors and Bioelectronics, 47, 141-148.
https://doi.org/10.1016/j.bios.2013.02.050
[104]  Vasiliev, B.V. (2013) Superconductivity and Superfluidity—Part I: The Development of the Science of Superconductivity and Superfluidity in the 20th Century. Universal Journal of Physics and Application, 1, 392-407.
http://www.hrpub.org/download/20131201/
UJPA5-18400592.pdf
[105]  Vasiliev, B.V. (2014) Superconductivity and Superfluidity-Part II: Superconductivity as a Consequence of Ordering of Zero-Point Oscillations in Electron Gas. Universal Journal of Physics and Application, 2, 22-35.
http://www.hrpub.org/download/20131215/
UJPA6-18400592II.pdf
[106]  Kaplana, D. and Imry, Y. (2018) High-Temperature Superconductivity Using a Model of Hydrogen Bonds. Proceedings of the National Academy of Sciences of the United States of America, 115, 5709-5713. https://doi.org/10.1073/pnas.1803767115
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984540/
[107]  Mann, A. (2011) High-Temperature Superconductivity at 25: Still in Suspense. Nature, 475, 280-282. https://doi.org/10.1038/475280a
https://www.nature.com/news/2011/110720
/full/475280a.html#B4
[108]  Pines, D. (2002) The Spin Fluctuation Model for High Temperature Superconductivity: Progress and Prospects. In: Bock, J., Deutscher, G., Pavuna, D. and Wolf, S.A., Eds., The Gap Symmetry and Fluctuations in High-Tc Superconductors, NATO Science Series: B, Springer, Boston, MA, 111-142.
https://doi.org/10.1007/0-306-47081-0_7
https://www.scribd.com/document/9465490
5/486d283e69-Bok-Supercond
[109]  Fedi, M. (2017) Gravity as a Fluid Dynamic Phenomenon in a Superfluid Quantum Space. Fluid Quantum Gravity and Relativity. Hal-01248015v4.
https://hal.archives-ouvertes.fr/hal-01248015v4
[110]  Sbitnev, V.I. (2018) Hydrodynamics of Superfluid Quantum Space: De Broglie Interpretation of the Quantum Mechanics. Quantum Studies: Mathematics and Foundations, 5, 257-271. https://arxiv.org/abs/1707.08508
https://doi.org/10.1007/s40509-017-0116-z
[111]  Reiter, G.F., et al. (2011) Evidence of a New Quantum State of Nano-Confined Water. Mesoscale and Nanoscale Physics, ArXiv: 1101.4994.
https://arxiv.org/abs/1101.4994
[112]  Bakker, H.J. and Nienhuys, H.-K. (2002) Delocalization of Protons in Liquid Water. Science, 297, 587-590.
https://doi.org/10.1126/science.1073298
https://pdfs.semanticscholar.org/ce35/6143
2c26353604d79ef6f12f5a119fbefaf3.pdf
[113]  Del Giudice, E., Preparata, G. and Vitiello, G. (1988) Water as a Free Electric Dipole Laser. Physical Review Letters, 61, 1085-1088.
https://doi.org/10.1103/PhysRevLett.61.1085
https://www.researchgate.net/publication/132
49471_Water_as_a_Free_Electric_Dipole_Laser
[114]  Arani, R., Bono, I., Del Giudice, E. and Preparata, G. (1995) QED Coherence and the Thermodynamics of Water. International Journal of Modern Physics B, 9, 1813-1841. https://doi.org/10.1142/S0217979295000744
[115]  Chen, B., Ivanov, I., Klein, M.L. and Parrinello, M. (2003) Hydrogen Bonding in Water. Physical Review Letters, 91, Article ID: 215503.
https://doi.org/10.1103/PhysRevLett.91.215503
https://www.researchgate.net/profile/Iva
ylo_Ivanov4/publication/8953214_Hydrog
en_Bonding_in_Water/links/0c960533dcdd
1e9efc000000.pdf
[116]  Benoit, M., Marx, D. and Parrinello, M. (1998) Tunnelling and Zeropoint Motion in High Pressure Ice. Nature, 392, 258-261.
https://doi.org/10.1038/32609
https://www.researchgate.net/publication/22
4015851_Tunnelling_and_zero-point_motion_in
_high-pressure_ice
[117]  Pamuk, B., et al. (2012) Anomalous Nuclear Quantum Effects in Ice. Physical Review Letters, 108, Article ID: 193003.
https://doi.org/10.1103/PhysRevLett.108.193003
https://repositorio.uam.es/bitstream/hand
le/10486/668161/Anomalous_Pamuk_prL_
2012.pdf?sequence=1
[118]  Tuckerman, M.E., Marx, D. and Parrinello, M. (2002) The Nature and Transport Mechanism of Hydrated Hydroxide Ions in Aqueous Solution. Nature, 417, 925-929. https://doi.org/10.1038/nature00797
https://www.researchgate.net/publication/1
1288822_The_Nature_and_Transport_Mechan
ism_of_Hydrated_Hydroxide_Ions_in_Aqueous_Solution
[119]  Paesani, F. and Voth, G.A. (2008) Quantum Effects Strongly Influence the Surface Premelting of Ice. Journal of Physical Chemistry C Letters, 112, 324-327.
https://doi.org/10.1021/jp710640e
[120]  Nagata, Y., Pool, R.E., Backus, E.H.G. and Bonn, M. (2012) Nuclear Quantum Effects Affect Bond Orientation of Water at the Water-Vapor Interface. Physical Review Letters, 109, 226101-226105. https://doi.org/10.1103/PhysRevLett.109.226101
https://www.researchgate.net/publica
tion/235389075_Nuclear_Quantum_Eff
ects_Affect_Bond_Orientation_of_Water
_at_the_Water-Vapor_Interface
[121]  Liu, J., et al. (2013) A Surface-Specific Isotope Effect in Mixtures of Light and Heavy Water. Journal of Physical Chemistry C, 117, 2944-2951.
https://doi.org/10.1021/jp311986m
[122]  Markland, T. and Berne, B. (2012) Unraveling Quantum Mechanical Effects in Water Using Isotopic Fractionation. Proceedings of the National Academy of Sciences of the United States of America, 109, 7988-7991.
https://doi.org/10.1073/pnas.1203365109
https://www.pnas.org/content/109/21/7988
[123]  Ye, H., Naguib, N. and Gogotsi, Y. (2004) TEM Study of Water in Carbon Nanotubes. JEOL News, 39, 38-43.
https://www.researchgate.net/publicatio
n/267646721_TEM_Study_of_Water_in_C
arbon_Nanotubes
[124]  Naguib, N., et al. (2004) Observation of Water Confined in Nanometer Channels of Closed Carbon Nanotubes. NanoLetters, 4, 2237-2243.
https://doi.org/10.1021/nl0484907
[125]  Hassanali, A.A., Cuny, J., Ceriotti, M., Pickard, C.J. and Parrinello, M. (2012) The Fuzzy Quantum Proton in the Hydrogen Chloride Hydrates. Journal of the American Chemical Society, 134, 8557-8569. https://doi.org/10.1021/ja3014727
[126]  Horbatenko, Y. and Vyboishchikov, S.F. (2011) Hydrogen Motion in Proton Sponge Cations: A Theoretical Study. Chemphyschem, 12, 1118-1129.
https://doi.org/10.1002/cphc.201000721
[127]  Bienko, A., Bieńko, A.J., Latajka, Z., Sawka-Dobrowolska, W. and Sobczyk, L. (2003) Low Barrier Hydrogen Bond in Protonated Proton Sponge. X-Ray Diffraction, Infrared, and Theoretical ab initio and Density Functional Theory Studies. The Journal of Chemical Physics, 119, 4313-4319. https://doi.org/10.1063/1.1594171
[128]  Li, X.-Z., Probert, M.I.J., Alavi, A. and Michaelides, A. (2010) Quantum Nature of the Proton in Water-Hydroxyl Overlayers on Metal Surfaces. Physical Review Letters, 104, Article ID: 066102. https://doi.org/10.1103/PhysRevLett.104.066102
https://www.ucl.ac.uk/catalytic-enviro-
group/wp-content/uploads/2016/03/Li
-Probert-Alavi-Michaelides-PRL2010.pdf
[129]  Bothma, J., Gilmore, J. and McKenzie, R.H. (2010) The Role of Quantum Effects in Proton Transfer Reactions in Enzymes: Quantum Tunneling in a Noisy Environment? New Journal of Physics, 12, Article ID: 055002.
https://doi.org/10.1088/1367-2630
/12/5/055002
https://iopscience.iop.org/article/10.1
088/1367-2630/12/5/055002/pdf
[130]  Grewer, C., Gameiro, A., Mager, T. and Fendler, K. (2013) Electrophysiological Characterization of Membrane Transport Proteins. Annual Review of Biophysics, 42, 95-120.
https://doi.org/10.1146/annurev-biophys-083012-130312
[131]  Watanabe, R., et al. (2014) Arrayed Lipid Bilayer Chambers Allow Single-Molecule Analysis of Membrane Transporter Activity. Nature Communications, 5, Article No. 4519. https://doi.org/10.1038/ncomms5519
https://www.nature.com/articles/ncomms5519
[132]  Gutiérrez-Sanz, ó., et al. (2015) Induction of a Proton Gradient across a Gold-Supported Biomimetic Membrane by Electroenzymatic H2 Oxidation. Angewandte Chemie International Edition, 54, 2684-2687.
[133]  Mitchell, P. (1961) Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic Type of Mechanism. Nature, 191, 144-148.
https://doi.org/10.1038/191144a0
[134]  Arnold, R.S., et al. (2009) Mitochondrial DNA Mutation Stimulates Prostate Cancer Growth in Bone Stromal Environment. The Prostate, 69, 1-11.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753601/
[135]  Shidara, Y., et al. (2005) Positive Contribution of Pathogenic Mutations in the Mitochondrial Genome to the Promotion of Cancer by Prevention from Apoptosis. Cancer Research, 65, 1655-1663. https://doi.org/10.1158/0008-5472.CAN-04-2012
http://cancerres.aacrjournals.org/content/65/5/1655
[136]  Mattiazzi, M., et al. (2004) The mtDNA T8993G (NARP) Mutation Results in an Impairment of Oxidative Phosphorylation that Can Be Improved by Antioxidants. Human Molecular Genetics, 13, 869-879. https://doi.org/10.1093/hmg/ddh103
https://academic.oup.com/hmg/article
/13/8/869/2355757
[137]  Sgarbi, G., et al. (2006) Inefficient Coupling between Proton Transport and ATP Synthesis May Be the Pathogenic Mechanism for NARP and Leigh Syndrome Resulting from the T8993G Mutation in mtDNA. Biochemical Journal, 395, 493-500.
https://www.researchgate.net/publicati
on/7368871_Inefficient_coupling_betwe
en_proton_transport_and_ATP_synthesis_
may_be_the_pathogenic_mechanism_for_N
ARP_and_Leigh_syndrome_resulting_from
_the_T8993G_mutation_in_mtDNA
https://doi.org/10.1042/BJ20051748
[138]  Simon, J., van Spanning, R.J.M. and Richardson, D.J. (2008) The Organization of Proton Motive and Non-Proton Motive Redox Loops in Prokaryotic Respiratory Systems. Biochimica et BiophysicaActa, 1777, 1480-1490.
https://doi.org/10.1016/j.bbabio.2008.09.008
https://www.sciencedirect.com/science/
article/pii/S0005272808006695
[139]  Saeed, H.A. and Lee, J.W. (2018) Experimental Determination of Proton-Cation Exchange Equilibrium Constants at Water-Membrane Interface Fundamental to Bioenergetics. Water Journal, 9, 116-140.
http://www.waterjournal.org/volume-9/lee
[140]  Georgievskii, Y., Medvedev, E.S. and Stuchebrukhov, A.A. (2002) Proton Transport via Coupled Surface and Bulk Diffusion. Journal of Chemical Physics, 116, 1692-1699. https://doi.org/10.1063/1.1428350
[141]  Rohani, M. and Pollack, G.H. (2013) Flow through Horizontal Tubes Submerged in Water in the Absence of a Pressure Gradient: Mechanistic Considerations. Langmuir, 29, 6556-6561. https://doi.org/10.1021/la4001945
[142]  Ho, M.W., Zhou, Y.-M., Haffegee, J. and Watton, A. (2006) The Liquid Crystalline Organism and Biological Water. In: Pollack, G., Ed., Water in Cell Biology, Springer, Dordrecht.
https://www.researchgate.net/publicati
on/226563146_The_Liquid_Crystalline_O
rganism_and_Biological_Water
[143]  Bardelmeyer, G.H. (1973) Electrical Conduction in Hydrated Collagen. I. Conductivity Mechanisms. Biopolymers, 12, 2289-2302.
https://doi.org/10.1002/bip.1973.360121008
[144]  Stoller, P.C., et al. (2003) Effects of Structural Modification on Second Harmonic Generation in Collagen. Proceedings of SPIE 4963, Multiphoton Microscopy in the Biomedical Sciences III, 41-51.
https://www.spiedigitallibrary.org/confe
rence-proceedings-of-spie/4963/1/Effec
t-of-structural-modification-on-second-ha
rmonic-generation-in-collagen/10.1117/
12.477998.short
[145]  Reise, K., Stoller, P. and Knoesen, A. (2017) Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry. Scientific Reports, 7, Article No. 2642. https://doi.org/10.1038/s41598-017-02326-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453962/
[146]  Pollack, G.H. (2017) Why Hydrogels Don’t Dribble Water. Gels, 3, 43.
https://doi.org/10.3390/gels3040043
https://www.mdpi.com/2310-2861/3/4/43/pdf
[147]  Yu, A., Carlson, P. and Pollack, G.H. (2014) Unexpected Axial Flow through Hydrophilic Tubes: Implications for Energetics of Water. The European Physical Journal Special Topics, 223, 947-958. https://doi.org/10.1140/epjst/e2013-01837-8
[148]  Qiana, S. and Bau, H.H. (2009) Magneto-Hydrodynamics Based Microfluidics. Mechanics Research Communications, 36, 10-21.
https://doi.org/10.1016/j.mechrescom.2008.06.013
https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2768299/
[149]  Spijkerman, J.M., et al. (2018) Phase Contrast MRI Measurements of Net Cerebrospinal Fluid Flow through the Cerebral Aqueduct Are Confounded by Respiration. Journal of Magnetic Resonance Imaging, 49, 433-444.
https://doi.org/10.1002/jmri.26181
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmri.26181
[150]  Balédent, O., et al. (2006) Value of Phase Contrast Magnetic Resonance Imaging for Investigation of Cerebral Hydrodynamics. Journal of Neuroradiology, 33, 292-303.
https://doi.org/10.1016/S0150-9861(06)77287-X
https://www.em-consulte.com/en/article/126927
[151]  Kim, D.-J., et al. (2012) Continuous Monitoring of the Monro-Kellie Doctrine: Is It Possible? Journal of Neurotrauma, 29, 1354-1363.
https://doi.org/10.1089/neu.2011.2018
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335107/
[152]  Riddick, T.M. (1968) Control of Colloid Stability through Zeta Potential: With a Closing Chapter on Its Relationship to Cardiovascular Disease. Livingston Publishing Company, London.
[153]  Messori, C. (2018) Near Death Experiences: Falling Down a Very Deep Well. Open Access Library Journal, 5, e4985. https://doi.org/10.4236/oalib.1104985
http://www.oalib.com/articles/5300585#.XJoQ1LieErs
[154]  Blalock, S. and Atwater, P.M.H. (2016) Electromagnetic and Other Environmental Effects Following Near-Death Experiences: A Primer. Journal of Near-Death Studies, 33, 181-211. https://doi.org/10.17514/JNDS-2015-33-4-p181-211.
[155]  Lee, J.W. (2012) Proton-Electrostatics Hypothesis for Localized Proton Coupling Bioenergetics. Bioenergetics, 1, 1-8.
https://www.google.it/url?sa=t&rct=j&q=
&esrc=s&source=web&cd=1&cad=rja&ua
ct=8&ved=2ahUKEwjHsdDwt7HiAhUKx4U
KHaKSCp8QFjAAegQIBRAC&url=https%3A
%2F%2Fwww.longdom.org%2Fopen-access
%2Fprotonelectrostatics-hypothesis-for-loc
alized-protoncoupling-bioenergetics-2167-7
662.1000104.pdf&usg=AOvVaw2awAFlHh
1h-WRJ056wzkNy
[156]  Georgiou, C.D. (2010) Oxidative Stress-Induced Biological Damage by Low-Level EMFs: Mechanism of Free Radical Pair Electron Spin Polarization and Biochemical Amplification. In: Giuliani, L. and Soffritti, M., Eds., Non-Thermal Effects and Mechanisms of Interaction between Electromagnetic Fields and Matter, European Journal of Oncology, 5 (Monograph), 63-113.
http://www.teslabel.be/PDF/ICEMS_Monograph_2010.pdf
[157]  Thar, R. and Kühl, M. (2004) Propagation of Electromagnetic Radiation in Mitochondria? Journal of Theoretical Biology, 230, 261-270.
https://doi.org/10.1016/j.jtbi.2004.05.021
https://www.researchgate.net/publication
/8407688_Propagation_of_electromagnetic
_radiation_in_mitochondria
[158]  Petersen, R.C., Reddy, M.S. and Liu, P.-R. (2018) Advancements in Free-Radical Pathologies and an Important Treatment Solution with a Free-Radical Inhibitor. SF Journal of Biotechnology and Biomedical Engineering, 1, 1-13.
https://scienceforecastoa.com/Articles/SJBBE-V1-E1-1003.pdf
[159]  Jansen, K.L.R. (1997) The Ketamine Model of the Near-Death Experience: A Central Role for the N-Methyl-D-Aspartate Receptor. Journal of Near-Death Studies, 16, 5-26. https://doi.org/10.17514/JNDS-1997-16-1-p63-69.
[160]  Agardh, C.D., Zhang, H., Smith, M.-L. and Siesj?, B.K. (1991) Free Radical Production and Ischemic Brain Damage: Influence of Postischemic Oxygen Tension. International Journal of Developmental Neuroscience, 9, 127-138.
https://doi.org/10.1016/0736-5748(91)90003-5
[161]  Ophir, A., et al. (1993) Hydroxyl Radical Generation in the Cat Retina during Reperfusion Following Ischemia. Experimental Eye Research, 57, 351-357.
https://doi.org/10.1006/exer.1993.1134
[162]  Basu, S., Miclescu, A., Sharma, H. and Wiklund, L. (2011) Propofol Mitigates Systemic Oxidative Injury during Experimental Cardiopulmonary Cerebral Resuscitation. Prostaglandins, Leukotrienes and Essential Fatty Acids, 84, 123-130.
https://doi.org/10.1016/j.plefa.2010.11.006
[163]  Petersen, R.C. (2013) Free-Radical Polymer Science Structural Cancer Model: A Review. Scientifica, 2013, Article ID: 143589. https://doi.org/10.1155/2013/143589
https://www.hindawi.com/journals/scien
tifica/2013/143589/
[164]  Suzuki, J., Imaizumi, S., Kayama, T. and Yoshimoto, T. (1985) Chemiluminescence in Hypoxic Brain—The Second Report: Cerebral Protective Effect of Mannitol, Vitamin E and Glucocorticoid. Stroke, 16, 695-700.
https://doi.org/10.1161/01.STR.16.4.695
https://pdfs.semanticscholar.org/1523/3f
7d88a401eb12dc06b7bc6fdddb20e52a15.pdf
[165]  Lu, F., et al. (2018) Review of Stratum Corneum Impedance Measurement in Non-Invasive Penetration Application. Biosensors, 8, 31.
https://doi.org/10.3390/bios8020031
https://www.ncbi.nlm.nih.gov/pmc/a
rticles/PMC6023082/
[166]  Wang, H. and Zhang, X. (2017) Magnetic Fields and Reactive Oxygen Species. International Journal of Molecular Sciences, 18, Article No. 2175.
https://doi.org/10.3390/ijms18102175
https://www.mdpi.com/1422-0067/18/10/2175/htm
[167]  Pang, X.F. and Deng, B. (2008) The Changes of Macroscopic Features and Microscopic Structures of Water under In?uence of Magnetic Field. Physica B: Condensed Matter, 403, 3571-3577. https://doi.org/10.1016/j.physb.2008.05.032
http://www.deltawater.net/wp-content/uploads/2017/08/1.3.pdf
[168]  Pang, X.F. (2006) The Conductivity Properties of Protons in Ice and Mechanism of Magnetization of Liquid Water. The European Physical Journal B: Condensed Matter and Complex Systems, 49, 5-23. https://doi.org/10.1140/epjb/e2006-00020-6
[169]  Eveson, R.W. and McLauchlan, K.A. (1999) Electron Spin Polarization Studies of the Dynamics of Geminate Free Radical Reactions. RIKEN Review, No. 24, 25-27.
http://www.dl.ndl.go.jp/view/download/
digidepo_8428544_po_24_025.pdf?contentNo=10&alternativeNo
[170]  Mohri, K. and Fukushima, M. (2003) Milligauss Magnetic Field Triggering Reliable Self-Organization of Water with Long-Range Ordered Proton Transport through Cyclotron Resonance. IEEE Transactions on Magnetics, 39, 3328-3330.
https://doi.org/10.1109/TMAG.2003.816766
[171]  Mohri, K., et al. (2010) Sensing of Human Microvibration Transmitted along Solid Using Pico-Tesla Magneto-Impedance Sensor (pT-MI Sensor). PIERS Online, 6, 161-164. http://www.piers.org/piersonline/pdf/Vol6No2Page161to164.pdf
[172]  Bonthuis, D.J., Uematsu, Y. and Netz, R.R. (2015) Interfacial Layer Effects on Surface Capacitances and Electro-Osmosis in Electrolytes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
https://doi.org/10.1098/rsta.2015.0033
http://rsta.royalsocietypublishing.org/
content/374/2060/20150033
[173]  Bonthuis, D.J. (2014) Dielectric Profiles and Ion-Specific Effects at Aqueous Interfaces. Electrostatics of Soft and Disordered Matter, 129-142.
http://www-thphys.physics.ox.ac.uk/peopl
e/DouweBonthuis/documents/2014_Bonth
uis_bookchapter.pdf
[174]  Teschke, O., Ceotto, G. and de Souza, E.F. (2001) Interfacial Water Dielectric-Permittivity-Profile Measurements Using Atomic Force Microscopy. Physical Review E, 64, Article ID: 011605.
https://doi.org/10.1103/PhysRevE.64.011605
http://repositorio.unicamp.br/bitstream/R
EPOSIP/60423/1/WOS000169907100061.pdf
[175]  Tobias, P.V. (1982) Man: The Tottering Biped: The Evolution of his Posture, Poise and Skill. CPME, Kensington.
[176]  Swensson, O., et al. (1998) Specialized Keratin Expression Pattern in Human Ridged Skin as an Adaptation to High Physical Stress. British Journal of Dermatology, 139, 767-775. https://doi.org/10.1046/j.1365-2133.1998.02499.x
[177]  Akinshina, A., Jambon-Puillet, E., Warren, P.B. and Noro, M.G. (2013) Self-Consistent Field Theory for the Interactions between Keratin Intermediate Filaments. BMC Biophysics, 6, 12. https://doi.org/10.1186/2046-1682-6-12
https://bmcbiophys.biomedcentral.com/articles/10.1186/2046-1682-6-12
[178]  Bragulla, H.H. and Homberger, D.G. (2009) Structure and Functions of Keratin Proteins in Simple, Stratified, Keratinized and Cornified Epithelia. Journal of Anatomy, 214, 516-559. https://doi.org/10.1111/j.1469-7580.2009.01066.x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736122/[181]
[179]  Del Giudice, E. and Preparata, G. (1994) Coherent Dynamics in Water as a Possible Explanation of Biological Membranes Formation. Journal of Biological Physics, 20, 105-116.
[180]  Papachristou, C. (2018) Some Remarks on the Charging Capacitor Problem. Advanced Electromagnetics, 7, 10-12. https://doi.org/10.7716/aem.v7i2.694
https://arxiv.org/ftp/arxiv/papers//1802/1802.01652.pdf
[181]  Seto, A., et al. (1992) Detection of Extraordinary Large Bio-Magnetic Field Strengh from Human Hand during External Qi Emission. Acupuncture & Electro-Therapeutic Research, 17, 75-94. https://doi.org/10.3727/036012992816357819
[182]  De Martino, L. (2017) Il Mondo Magico. Bollati Boringhieri Publisher, Turin, 21.
[183]  Gudgeon, W.E. (1899) The Umi-Ti, or Fire-Walking Ceremony. The Journal of the Polynesian Society, VIII.
[184]  Lundin, R., Lidgren, H. (2010) On the Attraction of Matter by the Ponderomotive Miller Force. Plasma Physics, ArXiv: 1005.4913. https://arxiv.org/abs/1005.4913
[185]  Hora, H. (2016) Introduction to the Ponderomotion Processes and Overview of Related Phenomena. In: Hora, H., Ed., Laser Plasma Physics: Forces and the Nonlinearity Principle, SPIE Digital Library. https://spie.org/samples/PM250.pdf
[186]  Edwards, E.D. (1998) Firewalking: A Contemporary Ritual and Transformation. The Drama Review, 42, 98-114. https://doi.org/10.1162/dram.1998.42.2.98
https://www.google.it/url?sa=t&rct=j&q=&
esrc=s&source=web&cd=2&cad=rja&uact=
8&ved=2ahUKEwi80pDTvLHiAhVHWxoKHU
MVBdoQFjABegQIARAC&url=https%3A%2F
%2Flibres.uncg.edu%2Fir%2Funcg%2Ff%2
FE_Edwards_Firewalking_1998.pdf&usg=AO
vVaw09-N6xXG7sZhxCX4Tor7Hs
[187]  Jebbar, M., Franzetti, B., Girard, E. and Oger, P. (2015) Microbial Diversity and Adaptation to High Hydrostatic Pressure in Deep-Sea Hydrothermal Vents Prokaryotes. Extremophiles, 19, 721-740. https://doi.org/10.1007/s00792-015-0760-3
https://www.researchgate.net/publication/2
79065389_Microbial_diversity_and_adaptatio
n_to_high_hydrostatic_pressure_in_deep-sea_h
ydrothermal_vents_prokaryotes
[188]  Fisher, C.R., Takai, K. and Le Bris, N. (2007) Hydrothermal Vent Ecosystems. Oceanography, 20, 14-23. https://doi.org/10.5670/oceanog.2007.75
https://archimer.ifremer.fr/doc/2007/publication-6109.pdf

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413