全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

The Cosmological Constant: 2nd Order Quantum-Mechanical Correction to the Newton Gravity

DOI: 10.4236/oalib.1105400, PP. 1-16

Subject Areas: Modern Physics

Keywords: Non-Minkowskian Hydrodynamic Representation of Quantum Equations, Einstein Gravity of Classical Fields, Energy-Impulse Tensor of Classical Klein-Gordon Field, Cosmological Constant

Full-Text   Cite this paper   Add to My Lib

Abstract

The work shows that the associated Einstein-like gravity for the Klein-Gordon field shows the spontaneous emergence of the “cosmological” pressure tensor density (CPTD) that in the classical limit leads to the cosmological constant (CC). Even if the classical cosmological constant is set to zero, the model shows, that exists a residual theory-derived quantum CPTD. The work shows that the cosmological constant can be considered as a second order quantum-mechanical correction to the Newtonian gravity. The outputs of the theory show that the expectation value of the CPTD is independent by the zero-point vacuum energy density and that it takes contribution only from the space where the mass is localized (and the space-time is curvilinear) while tending to zero as the space-time approaches to the flat vacuum. A developed model of scalar matter universe shows an overall cosmological effect of the CPTD on the motion of the galaxies that agrees with the astronomical observations.

Cite this paper

Chiarelli, P. (2019). The Cosmological Constant: 2nd Order Quantum-Mechanical Correction to the Newton Gravity. Open Access Library Journal, 6, e5400. doi: http://dx.doi.org/10.4236/oalib.1105400.

References

[1]  Rugh, S.E. and Zinkernagel, H. (2000) The Quantum Vacuum and the Cosmological Constant Problem. Arxiv: 0012253v1.
[2]  Barcelò, C., Liberatib, S., Sonegoc, S. and Visser, M. (2009) Revisiting the Semiclassical Gravity Scenario for Gravitational Collapse. AIP Conference Proceedings, 1122, 99. https://doi.org/10.1063/1.3141347
[3]  Hawking, S.W. (1975) Particle Creation by Black Holes. Communications in Mathematical Physics, 43, 199-220. https://doi.org/10.1007/BF02345020
[4]  Parikh, M.K. and Wilczek, F. (2000) Hawking Radiation as Tunneling. Physical Review Letters, 85, 5042-5045. https://doi.org/10.1103/PhysRevLett.85.5042
[5]  Banerjee, R. and Majhi, B.R. (2009) Hawking Black Body Spectrum from Tunneling Mechanism. Physics Letters B, 675, 243-245.
https://doi.org/10.1016/j.physletb.2009.04.005
[6]  Corda, C. (2015) Quasi-Normal Modes: The “Elec-trons” of Black Holes as “Gravitational Atoms”? Implications for the Black Hole Information Puzzle. Advances in High Energy Physics, 2015, Article ID: 867601.
https://doi.org/10.1155/2015/867601
[7]  Ortiz, M.E. and Holes, B. (1994) The Wheeler-DeWitt Equation and the Semiclassical Approximation. ArXiv: 9410030v1.
[8]  Einstein, A. (1931) Zum kosmolo-gischen Problem der allgemeinen Relativitats theorie. Sitzungsberichte der k?niglichen Preussischen Akademie der Wissen-schaften, 142, 235-237.
[9]  Carroll, S.M., Press, W.H. and Turner, E.L. (1992) The Cosmological Constant. Annual Review of Astronomy and Astrophysics, 30, 499-542.
https://doi.org/10.1146/annurev.aa.30.090192.002435
[10]  Hamber, H.W. (2000) Gravitational Scaling Dimensions. Physical Review D, 61, Article ID: 124008. https://doi.org/10.1103/PhysRevD.61.124008
[11]  Hamber, H.W. and Williams, R.M. (1984) Higher Derivative Quantum Gravity on a Simplicial Lattice. Nuclear Physics B, 248, 392-414.
https://doi.org/10.1016/0550-3213(84)90603-5
[12]  Pakravan, J. and Takook, M.V. (2018) Thermody-namics of Nonlinearly Charged Black Holes in the Brans-Dicke Modified Gravity. Journal of Theoretical and Applied Physics, 12, 147-157. https://doi.org/10.1007/s40094-018-0293-0
[13]  Chiarelli, P. (2019) The Gravity of the Classical Klein-Gordon Field. Symmetry, 11, 322. https://doi.org/10.3390/sym11030322
[14]  Madelung, E. (1927) Quantentheorie in Hydrodynamischer Form. Zeitschrift für Physik, 40, 322-326. https://doi.org/10.1007/BF01400372
[15]  Bohm, D. (1952) A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Physical Review Journals Archive, 85, 166.
https://doi.org/10.1103/PhysRev.85.166
[16]  Birula, I.B., Cieplak, M. and Kaminski, J. (1992) Theory of Quanta. Oxford University Press, New York, 87-115.
[17]  Jánossy, L. (1962) Zum hydrodynamischen Modell der Quanten-mechanik. Zeitschrift für Physik, 169, 79-89. https://doi.org/10.1007/BF01378286
[18]  Landau, L.D. and Lif?its, E.M. (1976) Course of Theoretical Physics. Italian Edition, Mir Mosca, Editori Riuniti, Rome, 318.
[19]  Le Bellac, M. (1986) Quantum and Statistical Field Theory. Oxford Science Publications, Oxford.
[20]  Landau, L.D. and Lif?its, E.M. (1976) Course of Theoretical Physics. Italian Edition, Mir Mosca, Editori Riuniti, Rome, 464.
[21]  Chiarelli, P. (2016) The Quantum Lowest Limit to the Black Hole Mass. International Journal of Physical Sciences, 9, 1-25.
[22]  Rugh, S.E. and Zinkernagel, H. (2000) The Quantum Vacuum and the Cosmological Constant Problem. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 33, 663-705.
[23]  Landau, L.D. and Lif?its, E.M. (1976) Course of Theoretical Physics. Italian Edition, Mir Mosca, Editori Riuniti, Rome, 391-396.
[24]  Carroll, B. W. and Ostlie, D.A. (2007) An Introduction to Modern Astrophysics. 2nd Edition, Pearson Education, London.
[25]  Corda C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. https://doi.org/10.1142/S0218271809015904

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413