全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

The Peripheral Hypotheses of Hypothalamic Aging

DOI: 10.4236/oalib.1104445, PP. 1-15

Subject Areas: Developmental Biology, Zoology, Neuroscience, Geriatrics

Keywords: Aging, Suprachiasmatic Nucleus, Slow Wave Sleep, Preoptic Sexually Dimorphic Nucleus, Testosterone, Paraventricular Nucleus

Full-Text   Cite this paper   Add to My Lib

Abstract

It is well known that the hypothalamic changes in control of hormones determine the chronological sequence of aging in mammals. For decades, it has been demonstrated in humans that the hypothalamic nuclei manifest heterogeneity in degeneration during aging, with the neuron number decreasing in both the suprachiasmatic nucleus (SCN) and the preoptic sexually dimorphic nucleus (SDN-POA) in the process of senescence, while the neuron number remains unchanged in the paraventricular nucleus (PVN). Recently, it was newly hypothesized some peripheral mechanisms responsible for the senescent changes of the hypothalamic nuclei. It was proposed by Cai that the decrease in slow-wave sleep (SWS) caused the degeneration of the suprachiasmatic nucleus (SCN). Besides, when reviewing the proposal by the European people in television about the senescent pathway for male reproduction on the degeneration of hypothalamic preoptic area by the common knowledge of reduction of sperm production from adipose accumulation in the middle/old age, it was as well demonstrated that the reduced testosterone level from the increased body fat caused the degeneration of the male preoptic sexually dimorphic nucleus (SDN-POA). It seems both the activity-dependent and hormonal regulation of the neuronal numbers are involved in the mechanisms causing the senescence of the hypothalamic nuclei. It is further pointed out that the paraventricular nucleus (PVN) maintaining its neuronal number unchanged in aging may cause many cellular and molecular changes of aging from chronic stress. It is expected that these preliminary considerations could elicit more investigations on the other peripheral causes for the hypothalamic aging, such as the cholesterol, hypertension, and so on.

Cite this paper

Cai, Z. (2018). The Peripheral Hypotheses of Hypothalamic Aging. Open Access Library Journal, 5, e4445. doi: http://dx.doi.org/10.4236/oalib.1104445.

References

[1]  Kim, S.K. (2007) Common Aging Pathways in Worms, Flies, Mice and Humans. Journal of Experimental Biology, 210, 1607-1612.
https://doi.org/10.1242/jeb.004887
[2]  Zahn, J.M. and Kim, S.K. (2007) Systems Biology of Aging in Four Species. Current Opinion in Biotechnology, 18, 355-359.
https://doi.org/10.1016/j.copbio.2007.07.004
[3]  Ishii, N., Ishii, T. and Hartman, P.S. (2007) The Role of the Electron Transport SDHC Gene on Lifespan and Cancer. Mitochondrion, 7, 24-28.
https://doi.org/10.1016/j.mito.2006.11.012
[4]  Sompol, P., Ittarat, W., Tangpong, J., Chen, Y., Doubinskaia, I., Batinic-Haberle, I., Abdul, H.M., Butterfield, D.A. and St Clair, D.K. (2008) A Neuronal Model of Alzheimer’s Disease: An Insight into the Mechanisms of Oxidative Stress-Mediated Mitochondrial Injury. Neuroscience, 153, 120-130.
https://doi.org/10.1016/j.neuroscience.2008.01.044
[5]  Nakamura, S. and Yoshimori, T. (2018) Autophagy and Longevity. Molecules and Cells, 41, 65-72.
[6]  Hubbard, V.M., Valdor, R., Macian, F. and Cuervo, A.M. (2012) Selective Autophagy in the Maintenance of Cellular Homeostasis in Aging Organisms. Biogerontology, 13, 21-35.
https://doi.org/10.1007/s10522-011-9331-x
[7]  Koga, H., Kaushik, S. and Cuervo, A.M. (2011) Protein Homeostasis and Aging: The Importance of Exquisite Quality Control. Ageing Research Reviews, 10, 205-215.
https://doi.org/10.1016/j.arr.2010.02.001
[8]  Aubert, G. and Lansdorp, P.M. (2008) Telomeres and Aging. Physiological Reviews, 88, 557-579.
https://doi.org/10.1152/physrev.00026.2007
[9]  Blasco, M.A. (2007) Telomere Length, Stem Cells and Aging. Nature Chemical Biology, 3, 640-649.
https://doi.org/10.1038/nchembio.2007.38
[10]  Hofman, M.A. (1997) Lifespan Changes in the Human Hypothalamus. Experimental Gerontology, 32, 559-575.
https://doi.org/10.1016/S0531-5565(96)00162-3
[11]  Aguilera, G. (2011) HPA Axis Responsiveness to Stress: Implications for Healthy Aging. Experimental Gerontology, 46, 90-95.
https://doi.org/10.1016/j.exger.2010.08.023
[12]  Bar-Dayan, Y., Afek, A., Bar-Dayan, Y., Goldberg, I. and Kopolovic, J. (1999) Proliferation, Apoptosis and Thymic Involution. Tissue and Cell, 31, 391-396.
https://doi.org/10.1054/tice.1999.0001
[13]  Taub, D.D. and Longo, D.L. (2005) Insights into Thymic Aging and Regeneration. Immunological Reviews, 205, 72-93.
https://doi.org/10.1111/j.0105-2896.2005.00275.x
[14]  Wang, X.L., Su, B., Perry, G., Smith, M.A. and Zhu, X.W. (2007) Insights into Amyloid-β Induced Mitochondrial Dysfunction in Alzheimer Disease. Free Radical Biology and Medicine, 43, 1569-1573.
https://doi.org/10.1016/j.freeradbiomed.2007.09.007
[15]  Kang, J.E., Lim, M.M., Bateman, R.J., Lee, J.J., Smyth, L.P., Cirrito, J.R., Fujiki, N., Nishino, S. and Holtzman, D.M. (2009) Amyloid-Beta Dynamics Are Regulated by Orexin and the Sleep-Wake Cycle. Science, 326, 1005-1007.
https://doi.org/10.1126/science.1180962
[16]  Zhou, J.-N. and Swaab, D.F. (1999) Activation and Degeneration during Aging: A Morphometric Study of the Human Hypothalamus. Microscopy Research and Technique, 44, 36-48.
https://doi.org/10.1002/(SICI)1097-0029(19990101)44:1
<36::AID-JEMT5>3.0.CO;2-F
[17]  Hsieh, Y.L., Hsu, C., Yang, S.L., Hsu, H.K. and Peng, M.T. (1996) Estradiol Modulation of Neuron Loss in the Medial Division of Medial Preoptic Nucleus in Rats during Aging. Gerontology, 42, 18-24.
https://doi.org/10.1159/000213766
[18]  Engelberth, R.C., Silva, K.D., Azevedo, C.V., Gavioli, E.C., dos Santos, J.R., Soares, J.G., Nascimento Jr., E.S., Cavalcante, J.C., Costa, M.S. and Cavalcante, J.S. (2014) Morphological Changes in the Suprachiasmatic Nucleus of Aging Female Marmosets (Callithrix jacchus). BioMed Research International, 2014, Article ID: 243825.
[19]  Panzica, G.C., García-Ojeda, E., Viglietti-Panzica, C., Thompson, N.E. and Ottinger, M.A. (1996) Testosterone Effects on Vasotocinergic Innervation of Sexually Dimorphic Medial Preoptic Nucleus and Lateral Septum during Aging in Male Quail. Brain Research, 712, 190-198.
https://doi.org/10.1016/0006-8993(95)01386-5
[20]  Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O’Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., Takano, T., Deane, R. and Nedergaard, M. (2013) Sleep Drives Metabolite Clearance from the Adult Brain. Science, 342, 373-377.
https://doi.org/10.1126/science.1241224
[21]  Cai, Z.-J. (1991) The Functions of Sleep: Further Analysis. Physiology & Behavior, 50, 53-60.
https://doi.org/10.1016/0031-9384(91)90497-C
[22]  Cai, Z.-J. (1995) An Integrative Analysis to Sleep Functions. Behavioural Brain Research, 69, 187-194.
https://doi.org/10.1016/0166-4328(95)00005-E
[23]  Cai, Z.-J. (2016) Progressions of Sleep, Memory and Depression Applicable to Psychoanalysis: A Review. Current Psychiatry Reviews, 12, 240-245.
https://doi.org/10.2174/1573400512666160610083505
[24]  Cai, Z.-J. (1990) The Neural Mechanism of Declarative Memory Consolidation and Retrieval: A Hypothesis. Neuroscience & Biobehavioral Reviews, 14, 295-304.
https://doi.org/10.1016/S0149-7634(05)80039-9
[25]  Cai, Z.-J. (2016) A Hypothetic Aging Pathway from Skin to Hypothalamic Suprachiasmatic Nucleus via Slow Wave Sleep. Sleep Science, 9, 212-215.
https://doi.org/10.1016/j.slsci.2016.09.004
[26]  Ehlers, C.L. and Kupfer, D.J. (1989) Effects of Age on Delta and REM Sleep Parameters. Electroencephalography and Clinical Neurophysiology, 72, 118-125.
https://doi.org/10.1016/0013-4694(89)90172-7
[27]  Espiritu, J.R. (2008) Aging-Related Sleep Changes. Clinics in Geriatric Medicine, 24, 1-14.
https://doi.org/10.1016/j.cger.2007.08.007
[28]  Hirshkowitz, M., Moore, C.A., Hamilton3rd, C.R., Rando, K.C. and Karacan, I. (1992) Polysomnography of Adults and Elderly: Sleep Architecture, Respiration, and Leg Movement. Journal of Clinical Neurophysiology, 9, 56-62.
https://doi.org/10.1097/00004691-199201000-00006
[29]  Duncan, M.J., Prochot, J.R., Cook, D.H., Tyler Smith, J. and Franklin, K.M. (2013) Influence of Aging on Bmal1 and Per2 Expression in Extra-SCN Oscillators in Hamster Brain. Brain Research, 1491, 44-53.
https://doi.org/10.1016/j.brainres.2012.11.008
[30]  Wyse, C.A. and Coogan, A.N. (2010) Impact of Aging on Diurnal Expression Patterns of CLOCK and BMAL1 in the Mouse Brain. Brain Research, 1337, 21-31.
https://doi.org/10.1016/j.brainres.2010.03.113
[31]  Cai, Z.-J. (2017) The Adipose Cause of Senescence of Male Hypothalamic Preoptic Nucleus: An European View. Research & Reviews: Neuroscience, 1, 21-26.
[32]  Cai, Z.-J. (2015) Termination of Organogenesis as Intrinsic Constraint on Animal Development and Evolution: A Theory. Open Access Library Journal, 2, e1646.
https://doi.org/10.4236/oalib.1101646
[33]  Cartwright, M.J., Tchkonia, T. and Kirkland, J.L. (2007) Aging in Adipocytes: Potential Impact of Inherent, Depot-Specific Mechanisms. Experimental Gerontology, 42, 463-471.
https://doi.org/10.1016/j.exger.2007.03.003
[34]  Carrascosa, J.M., Ros, M., Andrés, A., Fernández-Agulló, T. and Arribas, C. (2009) Changes in the Neuroendocrine Control of Energy Homeostasis by Adiposity Signals during Aging. Experimental Gerontology, 44, 20-25.
https://doi.org/10.1016/j.exger.2008.05.005
[35]  Yamada, K. and Harada, N. (1990) Expression of Estrogen Synthetase (P-450 Aromatase) during Adipose Differentiation of 3T3-L1 Cells. Biochemical and Biophysical Research Communications, 169, 531-536.
https://doi.org/10.1016/0006-291X(90)90363-R
[36]  Cohen, P.G. (2001) Aromatase, Adiposity, Aging and Disease. The Hypogonadal-Metabolic-Atherogenic-Disease and Aging Connection. Medical Hypotheses, 56, 702-708.
https://doi.org/10.1054/mehy.2000.1169
[37]  Callard, G.V., Tarrant, A.M., Novillo, A., Yacci, P., Ciaccia, L., Vajda, S., Chuang, G.Y., Kozakov, D., Greytak, S.R., Sawyer, S., Hoover, C. and Cotter, K.A. (2011) Evolu-tionary Origins of the Estrogen Signaling System: Insights from Amphioxus. The Journal of Steroid Biochemistry and Molecu-lar Biology, 127, 176-188.
https://doi.org/10.1016/j.jsbmb.2011.03.022
[38]  Zhang, Y., Zhang, S., Lu, H., Zhang, L. and Zhang, W. (2014) Genes Encoding Aromatases in Teleosts: Evolution and Expression Regulation. General and Comparative Endocrinology, 205, 151-158.
https://doi.org/10.1016/j.ygcen.2014.05.008
[39]  Bohne, A., Heule, C., Boileau, N. and Salzburger, W. (2013) Expression and Sequence Evolution of Aromatase cyp19a1 and Other Sexual Development Genes in East African Cichlid Fishes. Molecular Biology and Evolution, 30, 2268-2285.
https://doi.org/10.1093/molbev/mst124
[40]  Nakamura, M. (2013) Is a Sex-Determining Gene(s) Necessary for Sex-Determination in Amphibians? Steroid Hormones May Be the Key Factor. Sexual Development, 7, 104-114.
https://doi.org/10.1159/000339661
[41]  Girondot, M., Ben Hassine, S., Sellos, C., Godfrey, M. and Guillon, J.M. (2010) Modeling Thermal Influence on Animal Growth and Sex Determination in Reptiles: Being Closer to the Target Gives New Views. Sexual Development, 4, 29-38.
https://doi.org/10.1159/000280585
[42]  Nakamura, M. (2010) The Mechanism of Sex Determination in Vertebrates—Are Sex Steroids the Key-Factor? Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 313A, 381-398.
https://doi.org/10.1002/jez.616
[43]  Vermeulen, A., Kaufman, J.M., Goemaere, S. and van Pottelberg, I. (2002) Estradiol in Elderly Men. The Aging Male, 5, 98-102.
https://doi.org/10.1080/tam.5.2.98.102
[44]  Sermondade, N., Faure, C., Fezeu, L., Shayeb, A.G., Bonde, J.P., Jensen, T.K., Van Wely, M., Cao, J., Martini, A.C., Eskandar, M., Chavarro, J.E., Koloszar, S., Twigt, J.M., Ramlau-Hansen, C.H., Borges Jr., E., Lotti, F., Steegers-Theunissen, R.P., Zorn, B., Polotsky, A.J., La Vignera, S., Eskenazi, B., Tremellen, K., Magnusdottir, E.V., Fejes, I., Hercberg, S., Lévy, R. and Czernichow, S. (2013) BMI in Relation to Sperm Count: An Updated Systematic Review and Collaborative Meta-Analysis. Human Reproduction Update, 19, 221-231.
https://doi.org/10.1093/humupd/dms050
[45]  Torkler, S., Wallaschofski, H., Baumeister, S.E., Volzke, H., Dorr, M., Felix, S., Rettig, R., Nauck, M. and Haring, R. (2011) Inverse Association between Total Testosterone Concentrations, Incident Hypertension and Blood Pressure. The Aging Male, 14, 176-182.
https://doi.org/10.3109/13685538.2010.529194
[46]  Heidelbaugh, J.J. (2016) Endocrinology Update: Testicular Hypogonadism. FP Essentials, 451, 31-41.
[47]  Jackson, G., Boon, N., Eardley, I., Kirby, M., Dean, J., Hackett, G., Montorsi, P., Montorsi, F., Vlachopoulos, C., Kloner, R., Sharlip, I. and Miner, M. (2010) Erectile Dysfunction and Coronary Artery Disease Prediction: Evidence-based Guidance and Consensus. International Journal of Clinical Practice, 64, 848-857.
https://doi.org/10.1111/j.1742-1241.2010.02410.x
[48]  Moreno-Villanueva, M. and Bürkle, A. (2014) Molecular Consequences of Psychological Stress in Human Aging. Experimental Gerontology, 68, 39-42.
https://doi.org/10.1016/j.exger.2014.12.003

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413