全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Sensitivity Analysis of Dengue Model with Saturated Incidence Rate

DOI: 10.4236/oalib.1104413, PP. 1-17

Subject Areas: Mathematical Analysis

Keywords: Aedes aegypti, A. albopictus, Dengue Fever, Reproduction Number, Control Measures, Sensitivity Analysis, Aquatic Stage, Adult Stage

Full-Text   Cite this paper   Add to My Lib

Abstract

Dengue is a flavivirus, transmitted to human through the bites of infected Aedes aegypti and A. albopictus mosquitoes. In this paper, we analyze a new system of ordinary differential equations which incorporates saturated incidence function, vector biting rate and control measures at both the aquatic and adult stages of the vector (mosquito). The stability of the system is analysed for the dengue-free equilibrium via the threshold parameter (reproduction number) which was obtained using the Next generation matrix techniques. Routh Hurwitz criterion along together with Descartes’ rule of signs change established the local asymptotically stability of the model whenever R0<1and unstable otherwise. Furthermore, the sensitivity analysis was carried out and the numerical simulation reveals that increasing the proportion of human antibody and putting into place a control strategy that minimize the vector biting rate are enough to reduce the infection of the disease in the population to its barest minimum.

Cite this paper

Ojo, M. M. , Gbadamosi, B. , Olukayode, A. and Oluwaseun, O. R. (2018). Sensitivity Analysis of Dengue Model with Saturated Incidence Rate. Open Access Library Journal, 5, e4413. doi: http://dx.doi.org/10.4236/oalib.1104413.

References

[1]  Bowman, C., Gumel, A.B., van den Driessche, P., Wu, J. and Zhu, H. (2005) Mathematical Model for Assessing Control Strategies against West Nile Virus. Bulletin of 682 Mathematical Biology, 67, 1107-1133.
https://doi.org/10.1016/j.bulm.2005.01.002
[2]  Garba, S.M., Gumel, A.B. and Abu Bakar, M.R. (2008) Backward Bifurcations in Dengue Transmission Dynamics. Mathematical Biosciencees, 201, 11-25.
https://doi.org/10.1016/j.mbs.2008.05.002
[3]  Ranjit, S. and Kissoon, N. (2011) Dengue Hemorrhagic Fever and Shock Syndromes. Pediatric Critical Care Medicine, 12, Article ID: 90100.
https://doi.org/10.1097/PCC.0b013e3181e911a7
[4]  World Health Organization (2017) Dengue.
WWW.WHO.int/denguecontrol/faq/en/index6.html
[5]  Iurii, B. (2015) A survey of Mathematical Model of Dengue Fever. Elec-tronic Thesis & Dissertations, 1236.
http://digitalcommons.georgiasouthern.edu/etd/1236
[6]  Hossain, Md.S., Nayeem, J. and Podder, Dr.C. (2015) Effects of Migratory Population and Control Strategies on the Transmission Dynamics of Dengue Fever. Journal of Applied Mathematics & Bioinformatics, 5, 43-80.
[7]  Whitehorn, J. and Farrar, J. (2010) Dengue. British Medical Bulletin, 95, Article ID: 161173.
https://doi.org/10.1093/bmb/ldq019
[8]  Wilder-Smith, A. and Schwartz, E. (2005) Dengue in Travelers. The New England Journal of Medicine, 353, 924-932. (Effect of Migratory Population and Control Strategies.)
[9]  Varatharaj, A. (2010) Encephalitis in the Clinical Spectrum of Dengue Infection. Neurology India, 58, Article ID: 585591.
https://doi.org/10.4103/0028-3886.68655
[10]  Chowell, G., Diaz-Duenas, P., Miller, J.C., Alcazar-Velazco, A., Hyman, J.M., Fenimore, P.W. and Castillo Chavez C. (2007) Estimation of the Reproduction Number of Dengue Fever from Spatial Epidemic Data. Mathematical Biosciences, 208, 571-589.
https://doi.org/10.1016/j.mbs.2006.11.011
[11]  Lakshmikantham, V., Leela, S. and Martynyuk, A.A. (1989) Stability Analysis of Nonlinear Systems. Marcel Dekker, Inc., New York and Basel.
[12]  Jelinek, T. (2000) Dengue Fever in International Travelers. Clinical Infectious Diseases, 31, 144-147.
https://doi.org/10.1086/313889
[13]  Esteva, L. and Vargas, C. (1999) A Model for Dengue Disease with Variable Human Population. Journal of Mathematical Biology, 38, 220-240.
https://doi.org/10.1007/s002850050147
[14]  Coutinho, F.A.B., Burattini, M.N., Lopez, L.F. and Massad, E. (2006) Threshold Conditions for a Non-Autonomous Epidemic System Describing the Population Dynamics of Dengue. Bulletin of Mathematical Biology, 68, 2263-2282.
https://doi.org/10.1007/s11538-006-9108-6
[15]  Esteva, L. and Vargas, C. (1998) Analysis of a Dengue Disease Transmission Model. Mathematical Biosciences, 150, 131-151.
https://doi.org/10.1016/S0025-5564(98)10003-2
[16]  Esteva, L. and Vargas, C. (2000) Influence of Vertical and Mechanical Transmission on the Dynamics of Dengue Disease. Mathematical Biosciences, 167, 51-64.
https://doi.org/10.1016/S0025-5564(00)00024-9
[17]  Akinpelu, F.O. and Ojo, M.M. (2016) A Mathematical Model for the Dynamic Spread of Infection Caused by Poverty and Prostitution in Nigeria. International Journal of Mathematics and Physical Sciences Research, 4, 33-47.
[18]  Esteva, L., Gumel, A. and Vargas, C. (2009) Qualitative Study of Transmission Dynamics of Drug-Resistant Malaria. Mathematical and Computer Modelling, 50, 611-630. https://doi.org/10.1016/j.mcm.2009.02.012
[19]  Akinpelu, F.O. and Ojo, M.M. (2017) Sensitivity Analysis of Ebola Model. Asian Research Journal of Mathematics, 2, 1-10.
https://doi.org/10.9734/ARJOM/2017/30642
[20]  Iboi, E. and Okuonghae, D. (2016) Population Dynamics of a Mathematical Model for Syphilis. Applied Mathematical Modelling, 40, 3573-3590.
https://doi.org/10.1016/j.apm.2015.09.090
[21]  Hethcote, H.W. and Thieme, H.R. (1985) Stability of the Endemic Equilibrium in Epidemic Models with Sub Populations. Mathematical Biosciences, 75, 205-227.
https://doi.org/10.1016/0025-5564(85)90038-0
[22]  Derouich, M. and Boutayeb, A. (2006) Dengue Fever: Mathematical Modelling and Computer Simulation. Applied Mathematics and Computation, 177, 528-544.
https://doi.org/10.1016/j.amc.2005.11.031
[23]  Olaniyi, S. and Obabiyi, O.S. (2013) Mathematical Model for Malaria Transmission Dynamics in Human and Mosquito Populations with Nonlinear Forces of Infection. International Journal of Pure and Applied Mathematics, 88, 125-156.
[24]  Takahashi, L.T., Maidana, N.A., Ferreira Jr, W.C., Pulino, P. and Yang, H.M. (2005) Mathematical Models for the Aedes aegypti Dispersal Dynamics: Travelling Waves by Wing and Wind. Bulletin of Mathematical Biology, 67, 509-528.
https://doi.org/10.1016/j.bulm.2004.08.005
[25]  Vanden Driessche, P. and Watmough, J. (2002) Repro-duction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Bio-sciences, 180, 29-48.
https://doi.org/10.1016/S0025-5564(02)00108-6
[26]  Agusto, F.B. and ELmojtaba, I.M. Optimal Control and Cost-Effective Analysis of Malaria/Visceral Leishmaniasis Co-Infection. PLoS ONE, 12, e0171102.
https://doi.org/10.1371/journal.pone.0171102

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413