全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Effect of Geometrical Parameters on the Coefficient of Performance of the Ranque-Hilsch Vortex Tube

DOI: 10.4236/oalib.1104347, PP. 1-17

Subject Areas: Mechanical Engineering

Keywords: Ranque-Hilsch Vortex Tube (RHVT), Cold Orifice, Maxwell’s Demon, Refrigeration, Computational Fluid Dynamics (CFD), ANSYS Fluent

Full-Text   Cite this paper   Add to My Lib

Abstract

The Ranque-Hilsch vortex tube is a simple device with no moving parts and no mechanical operations. This tube separates the inlet air into two distinctive regions; an outward high temperature region and an inner low-temperature one. A computational study of the vortex tube is presented in this article using the ANSYS Fluent software whose results showed good agreement with the ex-perimental measurements. The effects of different geometrical parameters such as the tube length to diameter ratio and the cold orifice size on the coefficient of performance of the tube were investigated. The results showed that the coefficient of performance (COP) of the tube is highly affected by the tube length to diameter ratio (L/D), and this effect varies when operating at different cold mass fractions where the maximum coefficient of performance occur at cold mass fraction of 0.64. The results also showed that the coefficient of performance of the tube is also affected by the cold orifice to tube diameter ratio (dc/D) and that the maximum (COP) at any (dc/D) ratio occurs also at a cold mass fraction of 0.64.

Cite this paper

Abdelghany, S. T. and Kandil, H. A. (2018). Effect of Geometrical Parameters on the Coefficient of Performance of the Ranque-Hilsch Vortex Tube. Open Access Library Journal, 5, e4347. doi: http://dx.doi.org/10.4236/oalib.1104347.

References

[1]  Aljuwayhel, N.F., Nellis, G.F. and Klein, S.A. (2005) Parametric and Internal Study of the Vortex Tube Using a CFD Model. International Journal of Refrigeration, 28, 442-450.
https://doi.org/10.1016/j.ijrefrig.2004.04.004
[2]  Bramo, A. and Pourmahmoud, N. (2010) A Numerical Study on the Effect of Length to Diameter Ratio and Stagnation Point on the Performance of Counter Flow Ranque-Hilsch Vortex Tubes. Australian Journal of Basic and Applied Sciences, 4, 4943-4957.
[3]  Nimbalkar, S.U. and Muller, M.R. (2009) An Experimental Investigation of the Optimum Geometry for the Cold End Orifice of a Vortex Tube. Applied Thermal Engineering, 29, 509-514.
https://doi.org/10.1016/j.applthermaleng.2008.03.032
[4]  Rafiee, S.E. and Rahimi, M. (2013) Experimental Study and Three-Dimensional (3D) Computational Fluid Dynamics (CFD) Analysis on the Effect of the Convergence Ratio, Pressure Inlet and Number of Nozzle Intake on Vortex Tube Performance-Validation and CFD Optimization. Energy, 63, 195-204.
https://doi.org/10.1016/j.energy.2013.09.060
[5]  Dutta, T., Sinhamahapatra, K.P. and Bandyopdhyay, S.S. (2010) Comparison of Different Turbulence Models in Predicting the Temperature Separation in a Ranque-Hilsch Vortex Tube. International Journal of Refrigeration, 33, 783-792.
https://doi.org/10.1016/j.ijrefrig.2009.12.014
[6]  Aydin, O., Markal, B. and Avci, M. (2010) A New Vortex Generator Geometry for a Counter-Flow Ranquee-Hilsch Vortex Tube. Applied Thermal Engineering, 30, 2505-2511.
https://doi.org/10.1016/j.applthermaleng.2010.06.024
[7]  Thakare, H.R. and Parekh, A.D. (2014) CFD Analysis of Energy Separation of Vortex Tube Employing Different Gases, Turbulence Models and Discretisation Schemes. International Journal of Heat and Mass Transfer, 78, 360-370.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.083
[8]  Ranque, G.J. (1933) Methods and Apparatus for Obtaining from a Fluid under Pressure Two Currents of Fluids at Different Temperatures. Patent No. 1,952,281.
[9]  Hilsch, R. (1947) The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process. The Review of Scientific Instruments, 18, 108-113.
https://doi.org/10.1063/1.1740893
[10]  Xue, Y., Arjomandi, M. and Kelso, R. (2014) Energy Analysis within a Vortex Tube. Experimental Thermal and Fluid Science, 52, 139-145.
https://doi.org/10.1016/j.expthermflusci.2013.09.004
[11]  Xue, Y., Arjomandi, M. and Kelso, R. (2012) Experimental Study of the Flow Structure in a Counter Flow Ranque-Hilsch Vortex Tube. International Journal of Heat and Mass Transfer, 55, 5853-5860.
https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.081
[12]  Dincer, K., Baskaya, S., Uysal, B.Z. and Ucgul, I. (2009) Experimental Investigation and Exergy Analysis of the Performance of a Counter Flow Ranque-Hilsch Vortex Tube with Regard to Nozzle Cross-Section Areas. International Journal of Refrigeration, 32, 87-94.
https://doi.org/10.1016/j.ijrefrig.2008.06.002
[13]  Bovand, M., Valipour, M.S., Dincer, K. and Eiamsa-ard, S. (2014) Application of Response Surface Methodology to Optimization of a Standard Ranquee-Hilsch Vortex Tube Refrigerator. Applied Thermal Engineering, 67, 545-553.
https://doi.org/10.1016/j.applthermaleng.2014.03.039
[14]  Crocker, A.M., White, S.M. and Bremer, F. (2003) Experimental Results of a Vortex Tube Air Separator for Advanced Space Transportation. In: Proceedings of the 39th Joint Propulsion Conference and Exhibit, AIAA, Huntsville, 4451.
https://doi.org/10.2514/6.2003-4451
[15]  Balepin, V. and Rosholt, D. (1999) Progress in Air Seperation with the Vortex Tube. In: Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, Virginia, 4884.
[16]  Im, S.Y. and Yu, S.S. (2012) Effects of Geometric Parameters on the Separated Air Flow Temperature of a Vortex Tube for Design Optimization. Energy, 37, 154-160.
https://doi.org/10.1016/j.energy.2011.09.008
[17]  Zin, K.K., Hansske, A. and Ziegler, F. (2010) Modeling and Optimization of the Vortex Tube with Computational Fluid Dynamic Analysis. Energy Research Journal, 1, 193-196.
https://doi.org/10.3844/erjsp.2010.193.196
[18]  Gao, C.M., Bosschaart, K.J., Zeegers, J.C.H. and de Waele, A.T.A.M. (2005) Experimental Study on a Simple Ranque-Hilsch Vortex Tube. Cryogenics, 45, 173-183.
https://doi.org/10.1016/j.cryogenics.2004.09.004
[19]  Liu, X. and Liu, Z. (2014) Investigation of the Energy Separation Effect and Flow Mechanism inside a Vortex Tube. Applied Thermal Engineering, 67, 494-506.
https://doi.org/10.1016/j.applthermaleng.2014.03.071
[20]  Ahlborn, B.K. and Gordon, J.M. (2000) The Vortex Tube as a Classic Thermodynamic Refrigeration Cycle. Journal of Applied Physics, 88, 3645-3653.
[21]  Ahlborn, B.K., Keller, J.U. and Rebhan, E. (1998) The Heat Pump in a Vortex Tube. Journal of Non Equilibrium Thermodynamics, 23, 159-165.
https://doi.org/10.1515/jnet.1998.23.2.159
[22]  Gao, C. (2005) Experimental Study on the Ranque-Hilsch Vortex Tube. PhD Thesis, Technische Universiteit Eindhoven, Eindhoven.
[23]  Arbuzov, V.A., Dubnishchev, Y.N., Lebedev, A.V., Pravdina, M.K. and Yavorskii, N.I. (1997) Observation of Large-Scale Hydrodynamic Structures in a Vortex Tube and the Ranque Effect. Technical Physics Letters, 23, 938-940.
https://doi.org/10.1134/1.1261939
[24]  Colgate, S.A. and Buchler, J.R. (2000) Coherent Transport of Angular Momentum—The Ranque-Hilsch Tube a Paradigm. Annuals of the New York Academy of Sciences, 898, 105-112.
https://doi.org/10.1111/j.1749-6632.2000.tb06166.x
[25]  Kurosaka, M. (1982) Acoustic Streaming in Swirling Flow and the Ranque-Hilsch (Vortex-Tube) Effect. Journal of Fluid Mechanics, 124, 139-172.
https://doi.org/10.1017/S0022112082002444
[26]  Kazantseva, O.V., Piralishvili, S.A. and Fuzeeva, A.A. (2005) Numerical Simulation of Swirling Flows in Vortex Tubes. High Temperature, 43, 608-613.
https://doi.org/10.1007/s10740-005-0102-8
[27]  Behera, U., Paul, P.J., Dinesh, K. and Jacob, S. (2008) Numerical Investiga-tions on Flow Behaviour and Energy Separation in Ranque-Hilsch Vortex Tube. International Journal of Heat and Mass Transfer, 51, 6077-6089.
https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.029
[28]  Bovand, M., Valipour, M.S., Eiamsa-ard, S. and Tamayol, A. (2014) Numerical Analysis for Curved Vortex Tube Optimization. International Communications in Heat and Mass Transfer, 50, 98-107.
https://doi.org/10.1016/j.icheatmasstransfer.2013.11.012
[29]  El May, O.T., Mokni, I., Mhiri, H. and Bournot, P. (2011) CFD Investigation of a Vortex Tube: Effect of the Cold End Orifice in the Temperature Separation Mechanism. Science Academy Transactions on Renewable Energy Systems Engineering and Technology, 1, 84-89.
[30]  Abdelghany, S.T. and Kandil, H.A. (2015) Three-Dimensional Computational Investigation of the Power Separation and Flow Anatomy in the Vortex Tube. International Journal of Refrigeration, 20, 21-31.
[31]  Behera, U., et al. (2005) CFD Analysis and Experimental Investigations towards Optimizing the Parameters of Ranque-Hilsch Vortex Tube. International Journal of Heat and Mass Transfer, 48, 1961-1973.
https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.046
[32]  Farouk, T. and Farouk, B. (2007) Large Eddy Simulations of the Flow Field and Temperature Separation in the Ranque-Hilsch Vortex Tube. International Journal of Heat and Mass Transfer, 50, 4724-4735.
https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.048
[33]  Farouk, T., Farouk, B. and Gustol, A. (2009) Simulation of Gas Species and Temperature Separation in the Counter-Flow Ranque-Hilsch Vortex Tube Using the Large Eddy Simulation Technique. International Journal of Heat and Mass Transfer, 52, 3320-3333.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.016
[34]  Kandil, H.A. and Abdelghany, S.T. (2015) Computational In-vestigation of Different Effects on the Performance of the Ranque-Hilsch Vortex Tube. Energy, 84, 207-218.
https://doi.org/10.1016/j.energy.2015.02.089
[35]  Bramo, A. and Pourmahmoud, N. (2011) Computational Fluid Dynamics Simulation of Length to Diameter Ratio Effect on the Energy Seperation in a Vortex Tube. Thermal Science, 15, 833-848.
https://doi.org/10.2298/TSCI101004008B
[36]  Maurya, R.S. and Bhavsar, K.Y. (2013) Energy and Flow Separation in the Vortex Tube: A Numerical Investigation. International Journal on Theoretical and Applied Research in Mechanical Engineering, 2, 25-32.
[37]  Pourmahmoud, N. and Bramo, A. (2011) The Effect of L/D Ratio on the Temperature Separation in the Counterflow Vortex Tube. International Journal of Research and Reviews in Applied Sciences, 6, 60-68.
[38]  Patel, R.B. and Bartaria, V.N. (2013) Experimental Investigation & Numerical Analysis of Ranque Hilsch. International Journal of Engineering Research & Technology, 2, 1-6.
[39]  Dincer, K., Tasdemir, S., Baskaya, S. and Uysal, B.Z. (2008) Modeling of the Effects of Length to Diameter Ratio and Nozzle Number on the Performance of Counterflow Ranque-Hilsch Vortex Tubes Using Artificial Neural Networks. Applied Thermal Engineering, 28, 2380-2390.
https://doi.org/10.1016/j.applthermaleng.2008.01.016
[40]  Aydin, O. and Baki, M. (2006) An Experimental Study on the Design Parameters of a Counterflow Vortex Tube. Energy, 31, 2763-2772.
https://doi.org/10.1016/j.energy.2005.11.017
[41]  Andalibi, M.R., Azizi, S.H., Khameneh, P.M. and Janmohammadi, M. (2012) Effect of Diameter and Diameter of Orifice on the Performance of Vortex Tube. International Journal of Science and Engineering Investigations, 1, 89-93.
[42]  Skye, H.M., Nellis, G.F. and Klein, S.A. (2006) Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube. International Journal of Refrigeration, 29, 71-80.
https://doi.org/10.1016/j.ijrefrig.2005.05.004
[43]  ANSYS-Fluent.
https://www.ansys.com/Products/Fluids/ANSYS-Fluent
[44]  Fulton, C.D. (1950) Ranque’s Tube. Journal of the American Society of Refrigerating Engineers, 58, 473-479.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413