全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Collective Behavior in a Local Causal Model of Quantum Theory

DOI: 10.4236/oalib.1103898, PP. 1-25

Subject Areas: Theoretical Physics, Quantum Mechanics

Keywords: Causal Models, Collective Behavior, Quantum Field Theory, Lattice Gauge Theory, Decoherence, Spacetime Models

Full-Text   Cite this paper   Add to My Lib

Abstract

The non-localities in quantum theory (QT) (the most famous example is expressed in the violation of Bell’s inequality in experiments) impede the construction of a local causal model of QT including quantum field theory (QFT). The laws of collective behavior may be considered to be types of non-local laws: laws that apply to the collection of system components as a whole. The article presents a proposal for the treatment of the non-localities that exist in QT/QFT by the concepts of collective behavior. The basic components of the collective behavior are the spatial elements of the causal model of QT/QFT proposed by the author.

Cite this paper

Diel, H. H. (2017). Collective Behavior in a Local Causal Model of Quantum Theory. Open Access Library Journal, 4, e3898. doi: http://dx.doi.org/10.4236/oalib.1103898.

References

[1]  Bell, J.S. (1987) On the Einstein-Podolsky-Rosen Paradox. In: Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge.
[2]  Aspect, A., Dalibard, J. and Roger, G. (1982) Experimental Tests of Bell’s Inequalities using Time-Varying Analyzers. Physical Review Letters, 49, 1804-1807.
https://doi.org/10.1103/PhysRevLett.49.1804
[3]  Diel, H. (2016) The Completeness, Computability, and Extensibility of Quantum Theory.
[4]  Wolfram, S. (2002) A New Kind of Science. Wofram Media.
[5]  Ilachinski, A. (2001) Cellular Automata: A Discrete Universe. World Scientific.
https://doi.org/10.1142/4702
[6]  Diel, H. (2016) Are Local Causal Models of Quantum Theory Feasible at All?
[7]  Diel, H. (2016) Quantum Objects as Elementary Units of Causality and Locality.
[8]  Satz, H. (2013) Gottes unsichtbare Würfel. Verlag C.H. Beck, München.
https://doi.org/10.17104/9783406655500
[9]  Wegner, F. (1971) Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters. Journal of Mathematical Physics, 12, 2259-2272.
https://doi.org/10.1063/1.1665530
[10]  Wilson, K.G. (1974) Confinement of Quarks. Physical Review D, 14, 2455.
[11]  Kogut, J.B. (1979) An Introduction to Lattice Gauge Theory and Spin Systems. Reviews of Modern Physics, 51, 659-714.
https://doi.org/10.1103/RevModPhys.51.659
[12]  Loll, R., Ambjorn, J. and Jurkiewicz, J. (2005) The Universe from Scratch.
[13]  Satz, H. (2016) Kosmische Dammerung. Verlag C.H. Beck, München.
https://doi.org/10.17104/9783406697883
[14]  Strassler, M. (2017) Conversations about Science with Theoretical Physicist.
https://profmattstrassler.com/articles-and-posts/particle-physics-basics/
[15]  Mandl, F. and Shaw, G. (1993) Quanten-feldtheorie. AULA Verlag, 351.
[16]  Diel, H. (2014) A Model of the Measurement Process in Quantum Theory.
[17]  Diel, H. (2015) An Improved “Interference Collapse Rule” of Quantum Mechanics. Open Access Library Journal, 2, e1838.
https://doi.org/10.4236/oalib.1101838
[18]  Schlosshauer, M. (2007) Decoherence and the Quantum-to-Classical Transition. Springer Verlag, Berlin.
[19]  Everett III, H. (1957) Relative State’ Formulation of Quantum Mechanics. Reviews of Modern Physics, 29, 454.
https://doi.org/10.1103/RevModPhys.29.454
[20]  Laughlin, R.B. (2006) A Different Universe: Reinventing Physics from the Bottom Down. Basic Books.
[21]  Diel, H.H. (2017) Spacetime Structures in a Causal Model of Quantum Theory. Open Access Library Journal, 4, e3357.
https://doi.org/10.4236/oalib.1103357

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413