全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

A Deterministic Mathematical Model for Direct and Indirect Transmission Dynamics of Typhoid Fever

DOI: 10.4236/oalib.1103493, PP. 1-16

Subject Areas: Ordinary Differential Equation

Keywords: Modeling, Sanitation, Treatment, Vaccination, Epidemiology, Typhoid

Full-Text   Cite this paper   Add to My Lib

Abstract

Improvements in sanitation and the provision of clean drinking water led to the elimination of typhoid fever from developed countries in the beginning of the 20th century. However, Salmonella typhi and paratyphi remain a major source of morbidity and mortality in many developing countries today. The dynamics of typhoid transmission are poorly understood. In this study, we develop a novel mathematical model that captures the role of both human to human interaction and human to environment interaction in the transmission dynamics of typhoid fever. Our results have shown the feasible impact of different methods of typhoid control, including vaccination, improved treatment strategies, and investment in clean water and sanitation.

Cite this paper

Edward, S. (2017). A Deterministic Mathematical Model for Direct and Indirect Transmission Dynamics of Typhoid Fever. Open Access Library Journal, 4, e3493. doi: http://dx.doi.org/10.4236/oalib.1103493.

References

[1]  Mushayabasa, S., Bhunu, C.P. and Ngarakana-Gwasira, E.T. (2013) Mathematical Analysis of a Typhoid Model with Carriers, Direct and Indirect Disease Transmission. International Journal of Mathematical Sciences and Engineering Applications, 7, 79-90.
[2]  Mushayabasa, S. (2012) A Simple Epidemiological Model for Typhoid with Saturated Incidence Rate and Treatment Effect. International Journal of Biological, Veterinary, Agricultural and Food Engineering, 6, 56-63.
[3]  Pitzer, V.E., Cayley, C., Bowles, C.C., Baker, S., Kang, G., Balaji, V., Farrar, J.J., Bryan, T. and Grenfell, B.T. (2014) Predicting the Impact of Vaccination on the Transmission Dynamics of Typhoid in South Asia: A Mathematical Modeling Study. PLOS Neglected Tropical Diseases, 8, e2642.
https://doi.org/10.1371/journal.pntd.0002642
[4]  Buckle, G., Walker, C. and Black, R. (2012) Typhoid Fever and Paratyphoid Fever: Systematic Review to Estimate Global Morbidity and Mortality for 2010.Journal of Global Health, 2, 1-9.
https://doi.org/10.7189/jogh.01.010401
[5]  WHO (2003) Background Document, Typhoid Fever and Paratyphoid Fever. World Health Organization, 1-26.
[6]  Adetunde, I.A. (2008) A Mathematical Models for the Dynamics of Typhoid Fever in Kassena-Nankana District of Upper East Region of Ghana. Journal of Modern Mathematics and Statistics, 2, 45-49.
[7]  Kalajdzievska, D. and Li, M.Y. (2011) Modeling the Effects of Carriers on Transmission Dynamics of Infectious Disease. Mathematical Biosciences and Engineering, 8, 711-722.
https://doi.org/10.3934/mbe.2011.8.711
[8]  Khan, M.A., Parvez, M., Islam, S., Khan, I., Shafie, S. and Gul, T. (2015) Mathematical Analysis of Typhoid Model with Saturated Incidence Rate. Advanced Studies in Biology, 7, 65-78.
https://doi.org/10.12988/asb.2015.41059
[9]  Mushayabasa, S. (2014) Modeling the Impact of Optimal Screening on Typhoid Dynamics. International Journal of Dynamics and Control, 4, 330-338.
[10]  Mushayabasa, S. (2011) Impact of Vaccines on Controlling Typhoid Fever in Kassena-Nankana District of Upper East Region of Ghana: Insights from a Mathematical Model. Journal of Modern Mathematics and Statistics, 5, 54-59.
https://doi.org/10.3923/jmmstat.2011.54.59
[11]  Edward, S. and Nyerere, N. (2016) Modeling Typhoid Fever with Vaccination and Treatment. Engineering Mathematics, 1, 44-52.
[12]  Edward, S. (2017) Modeling and Stability Analysis of Typhoid Fever Transmission Dynamics with control Strategies. International Journal of Sciences: Basic and Applied Research, 32, 151-168.
[13]  Baker, S., Holt, K.E., Clements, A.C.A., Karkey, A., Arjyal, A., Boni, M.F., Dongol, S., Hammond, N., Koirala, S., Duy, P.T., Nga, T.V., Campbell, J.I., Dolecek, C., Basnyat, B., Dougan, G. and Farrar, J.J. (2011) Combined High-Resolution Genotyping and Geospatial Analysis Reveals Modes of Endemic Urban Typhoid Fever, Transmission. Open Biology, 1, Article ID: 110008.
https://doi.org/10.1098/rsob.110008
[14]  Uneke, C.J. (2008) Concurrent Malaria and Typhoid Fever in the Tropics: The Diagnostic Challenge and Public Health Implications. Journal of Vector Borne Diseases, 45,133-142.
http://who.int/malaria/publications/atoz/9789241547925
/en/index.html

[15]  Mutua, J.M., Wang, F.B. and Vaidya, N.K. (2015) Modeling Malaria and Typhoid Fever Co-Infection Dynamics. Mathematical Biosciences, 264,128-144.
[16]  Fujikawa, H., Kai, A. and Morozumi, S. (2004) A New Logistic Model for Escherichia Coli Growth at Constant and Dynamic Temperatures. Food Microbiology, 21, 501-509.
[17]  Juneja, V.K., Melendres, M.V., Huang, L., Subbiah, J. and Thippareddi, H. (2009) Mathematical Modeling of Growth of Salmonella in Raw Ground Beef under Isothermal Conditions from 10 to 45 C. International Journal of Food Microbiology, 131, 106-111.
[18]  Naresh, R. and Pandey, S. (2012) Modeling the Effect of Environmental Factors on the Spread of Bacterial Disease in an Economically Structured Population. Application and Applied Mathematics, an International Journal, 7, 426-454.
[19]  Pearl, R. (1927) The Growth of Populations. The Quarterly Review of Biology, 2, 532-548.
https://doi.org/10.1086/394288
[20]  Vadasz, A.S., Vadasz, P., Abashar, M.E. and Gupthar, A.S. (2001) Recovery of an Oscillatory Mode of Batch Yeast Growth in Water for a Pure Culture. International Journal of Food Microbiology, 71, 219-234.
[21]  Verhulst, P.F. (1838) Notice surla loique la population suit dansson accrois-sement. Corr.Math. et Phys.Publ. par A. Quetelet. TX, 113-121.
[22]  Diekmann, O., Heesterbeek, J.A.P. and Roberts, M.G. (2009)The Construction of Next-Generation Matrices for Compartmental Epidemic Models. Journal of the Royal Society Interface, 7, 873-885.
[23]  Van den Driessche, P. and Watmough, J. (2002) Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Biosciences, 180, 29-48.
[24]  Velema, J.P., van Wijnen, G., Bult, P., van Naerssen, T. and Jota, S. (1997) Typhoid Fever in Ujung Pandang, Indonesia? High-Risk Groups and High-Risk Behaviors. Tropical Medicine & International Health, 2, 1088-1094.
https://doi.org/10.1046/j.1365-3156.1997.d01-179.x
[25]  Greenwell, J., McCool, J., Kool, J. and Salusalu, M. (2012) Typhoid Fever: Hurdles to Adequate Hand Washing for Disease Prevention among the Population of a Peri-Urban Informal Settlement in Fiji. Western Pacific Surveillance and Response Journal, 3, 41-45.
[26]  Gonzalez-Guzman, J. (1989) An Epidemiological Model for Direct and Indirect Transmission of Typhoid Fever. Mathematical Biosciences, 96, 33-46.
[27]  Bailey, N.J. (1982) The Structural Simplification of an Epidemiological Compartment Model. Journal of Mathematical Biology, 14,101-116.
[28]  Briscoe, J. (1980) On the Use of Simple Analytic Mathematical Models of Communicable Diseases. International Journal of Epidemiology, 9, 265-270.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413