全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Preon Model, Knot Algebra and Gravity

DOI: 10.4236/oalib.1103432, PP. 1-10

Subject Areas: Particle Physics

Keywords: Preons, Standard Model, Knot Theory, Teleparallel Gravity, Quantum Gravity

Full-Text   Cite this paper   Add to My Lib

Abstract

I study the properties of a preon model for the substructure of the standard model quarks and leptons. The goal is to establish both local and global group representations for the particles of the model. Knot theory algebra SLq(2) is shown to be applicable to the model. Teleparallel gravity is discussed with an interesting result to hadronic physics. A tentative glimpse on quantum gravity is indicated.

Cite this paper

Raitio, R. (2017). Preon Model, Knot Algebra and Gravity. Open Access Library Journal, 4, e3432. doi: http://dx.doi.org/10.4236/oalib.1103432.

References

[1]  Raitio, R. (1980) A Model of Lepton and Quark Structure. Physica Scripta, 22, 197. https://doi.org/10.1088/0031-8949/22/3/002
[2]  Raitio, R. (2016) Combinatorial Preon Model for Matter and Unification. Open Access Library Journal, 3, e3032.
[3]  Finkelstein, R. (2017) On the SLq(2) Extension of the Standard Model and the Measure of Charge. International Journal of Modern Physics A, 32, Article ID: 1730001.
[4]  Finkelstein, R. (2014) SLq(2) Extension of the Standard Model. Physical Review D, 89, Article ID: 125020. https://doi.org/10.1103/PhysRevD.89.125020
[5]  Raitio, R. (2017) On the Conformal Unity between Quantum Particles and General Relativity. Open Access Library Journal, 4, e3342. https://doi.org/10.4236/oalib.1103342
[6]  Greenberg, O. (2009) The Color Charge Degree of Freedom in Particle Physics. In: Greenberger, D., Hentschel, K. and Weinert, F., Eds., Compendium of Quantum Physics, Springer-Verlag, Berlin Heidelberg, 109-111. https://doi.org/10.1007/978-3-540-70626-7_32
[7]  Thomson, W. (1868) VI.—On Vortex Motion. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 25, 217-260. https://doi.org/10.1017/S0080456800028179
[8]  Faddeev, L. and Niemi, A. (1997) Stable Knot-Like Structures in Classical Field Theory. Nature, 387, 58. https://doi.org/10.1038/387058a0
[9]  Finkelstein, R. (2015) The SLq(2) Extension of the Standard Model. International Journal of Modern Physics A, 30, Article ID: 1530037. https://doi.org/10.1142/S0217751X15300379
[10]  Ulhoa, S. and Amorim, R. (2014) On Teleparallel Quantum Gravity in Schwarzschild Space-Time. Advances in High Energy Physics, 2014, Article ID: 812691. https://doi.org/10.1155/2014/812691
[11]  Einstein, A. (1930) Auf die Riemann-Metrik und den Fern-Parallelismus gegründete einheitliche Feldtheorie. Mathematische Annalen, 102, 685-697. https://doi.org/10.1007/BF01782370
[12]  Aldrovandi, R. and Pereira, J. (2013) An Introduction to Teleparallel Gravity. Springer, New York. https://doi.org/10.1007/978-94-007-5143-9
[13]  Cartan, E. (1980) In NATO ASIB Proceedings 58: Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity, 489-491.
[14]  Poplawski, N. (2011) Cosmological Constant from Quarks and Torsion. Annalen der Physik, 523, 291-295. https://doi.org/10.1002/andp.201000162
[15]  Harari, H. (1979) A Schematic Model of Quarks and Leptons. Physics Letters B, 86, 83-86. https://doi.org/10.1016/0370-2693(79)90626-9
[16]  Shupe, M. (1979) A Composite Model of Leptons and Quarks. Physics Letters B, 86, 87-92. https://doi.org/10.1016/0370-2693(79)90627-0
[17]  Townsend, P. (1977) Small-Scale Structure of Space-Time as the Origin of the Gravitational Constants. Physical Review D, 15, 2795.
[18]  MacDowell, S. and Mansouri, F. (1977) Unified Geometric Theory of Gravity and Supergravity. Physical Review Letters, 38, 739.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413